Skip to main content

Emerging Clinical Decision Support Technology for the Twenty First Century

  • Chapter
Healthcare Information Management Systems

Part of the book series: Health Informatics ((HI))

  • 6871 Accesses

Abstract

Chapter 1 reviewed key aspects of the history of Clinical Decision Support (CDS), describing the significant progress achieved as well as calling out some of the limitations that have diminished the expected benefits of CDS despite increasingly widespread use of EHR technology. This chapter will describe emerging approaches and new technologies that show promise for addressing some of the current limitations of the field, and which hold hope for more widespread realization of the benefits of CDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler NE, Stead WW. Patients in context — EHR capture of social and behavioral determinants of health. N Engl J Med. 2015;372:698–701. doi:10.1056/NEJMp1413945.

    Article  CAS  PubMed  Google Scholar 

  2. Amland RC, Hahn-Cover KE. Clinical decision support for early recognition of sepsis. Am J Med Qual. 2014. doi:10.1177/1062860614557636.

    PubMed  Google Scholar 

  3. Aronsky D, Haug PJ. Diagnosing community-acquired pneumonia with a Bayesian network. Proc AMIA Symp. 1998;632–6.

    Google Scholar 

  4. Bates DW, Saria S, Ohno-Machado L, et al. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff (Millwood). 2014;33:1123–31. doi:10.1377/hlthaff.2014.0041.

    Article  Google Scholar 

  5. Calvillo-King L, Arnold D, Eubank KJ, et al. Impact of social factors on risk of readmission or mortality in pneumonia and heart failure: systematic review. J Gen Intern Med. 2013;28:269–82. doi:10.1007/s11606-012-2235-x.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Choudhry SA, Li J, Davis D, et al. A public-private partnership develops and externally validates a 30-day hospital readmission risk prediction model. Online J Publ Health Inf. 2013;5:219. doi:10.5210/ojphi.v5i2.4726.

    Google Scholar 

  7. Cimino JJ, Elhanan G, Zeng Q. Supporting infobuttons with terminological knowledge. Proc AMIA Annu Fall Symp. 1997;528–32.

    Google Scholar 

  8. Covell DG, Uman GC, Manning PR. Information needs in office practice: are they being met? Ann Intern Med. 1985;103:596–9.

    Article  CAS  PubMed  Google Scholar 

  9. Dixon BE, Simonaitis L, Goldberg HS, et al. A pilot study of distributed knowledge management and clinical decision support in the cloud. Artif Intell Med. 2013;59:45–53. doi:10.1016/j.artmed.2013.03.004.

    Article  PubMed  Google Scholar 

  10. Dolan JG, Veazie PJ, Russ AJ. Development and initial evaluation of a treatment decision dashboard. BMC Med Inform Decis Mak. 2013;13:51. doi:10.1186/1472-6947-13-51.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Duda RO, Hart PE, Stork DG, Wiley-Interscience. Pattern classification. 2nd ed. New York: Wiley-Interscience; 2000.

    Google Scholar 

  12. Ely JW, Osheroff JA, Chambliss ML, et al. Answering physicians’ clinical questions: obstacles and potential solutions. J Am Med Inform Assoc. 2005;12:217–24. doi:10.1197/jamia.M1608.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Feblowitz JC, Wright A, Singh H, et al. Summarization of clinical information: a conceptual model. J Biomed Inform. 2011;44:688–99. doi:10.1016/j.jbi.2011.03.008.

    Article  PubMed  Google Scholar 

  14. Gultepe E, Green JP, Nguyen H, et al. From vital signs to clinical outcomes for patients with sepsis: a machine learning basis for a clinical decision support system. J Am Med Inform Assoc. 2013;21:315–25. doi:10.1136/amiajnl-2013-001815.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Halamka J. Life as a healthcare CIO: decision support service providers. 2010. http://geekdoctor.blogspot.com/2010/06/decision-support-service-providers.html. Accessed 13 Jan 2015.

  16. HL7. HL7 context aware knowledge retrieval application (“Infobutton”), knowledge request, release 2. 2014. http://www.hl7.org/implement/standards/product_brief.cfm?product_id=208. Accessed 28 Mar 2015.

  17. HL7. Clinical document architecture release 2; 2006. http://www.hl7.org/implement/standards/product_brief.cfm?product_id=7. Accessed 1 Jun 2015.

  18. HL7. HL7 standards product brief - HL7 implementation guide for CDA® release 2: IHE health story consolidation, release 1.1 - US Realm; 2012. http://www.hl7.org/implement/standards/product_brief.cfm?product_id=258. Accessed 28 Mar 2015.

  19. HL7. FHIR; 2014. http://www.hl7.org/implement/standards/fhir/. Accessed 18 Dec 2014.

  20. HLNConsulting. HLN: Immunization Calculation Engine (ICE); 2015. https://www.hln.com/ice/. Accessed 13 Jan 2015.

  21. Horowitz GL, Bleich HL. PaperChase: a computer program to search the medical literature. N Engl J Med. 1981;305:924–30. doi:10.1056/NEJM198110153051605.

    Article  CAS  PubMed  Google Scholar 

  22. Kawamoto K. OpenCDS Home; 2015. http://www.opencds.org/. Accessed 13 Jan 2015.

  23. Kawamoto K, Honey A, Rubin K. The HL7-OMG healthcare services specification project: motivation, methodology, and deliverables for enabling a semantically interoperable service-oriented architecture for healthcare. J Am Med Inform Assoc. 2009;16:874–81. doi:10.1197/jamia.M3123.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Klimov D, Shahar Y. A framework for intelligent visualization of multiple time-oriented medical records. AMIA Annu Symp Proc. 2005;405–9.

    Google Scholar 

  25. Lamy J-B, Ellini A, Ebrahiminia V, et al. Use of the C4.5 machine learning algorithm to test a clinical guideline-based decision support system. Stud Health Technol Inform. 2008;136:223–8.

    PubMed Central  PubMed  Google Scholar 

  26. Loya SR, Kawamoto K, Chatwin C, Huser V. Service oriented architecture for clinical decision support: a systematic review and future directions. J Med Syst. 2014;38:140. doi:10.1007/s10916-014-0140-z.

    Article  PubMed  Google Scholar 

  27. Lu Z. PubMed and beyond: a survey of web tools for searching biomedical literature. Database Oxford University Press 2011:baq036. doi: 10.1093/database/baq036.

    Google Scholar 

  28. Mandl KD, Mandel JC, Murphy SN, et al. The SMART platform: early experience enabling substitutable applications for electronic health records. J Am Med Inform Assoc. 2012;19:597–603.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Mandl KD, Kohane IS. No small change for the health information economy. The New England Journal of Medicine. 2009;360(13):1278–81. doi:10.1056/NEJMp0900411.

    Google Scholar 

  30. ONC S and I. Health eDecisions Homepage; 2013. http://wiki.siframework.org/Health+eDecisions+Homepage. Accessed 17 Mar 2015.

  31. Paterno MD, Maviglia SM, Ramelson HZ, et al. Creating shareable decision support services: an interdisciplinary challenge. AMIA Annu Symp Proc. 2010;2010:602–6.

    PubMed Central  PubMed  Google Scholar 

  32. Podgorelec V, Kokol P, Stiglic B, Rozman I. Decision trees: an overview and their use in medicine. J Med Syst. 2002;26:445–63.

    Article  PubMed  Google Scholar 

  33. Raths D. Trend: standards development. Catching FHIR. A new HL7 draft standard may boost web services development in healthcare. Healthc Inform. 2014;31(13):16.

    Google Scholar 

  34. Schweitzer EJ. Reconciliation of the cloud computing model with US federal electronic health record regulations. J Am Med Inform Assoc. 2012;19:161–5.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Segal MM, Abdellateef M, El-Hattab AW, et al. Clinical pertinence metric enables hypothesis-independent genome-phenome analysis for neurologic diagnosis. J Child Neurol. 2014. doi:10.1177/0883073814545884.

    Google Scholar 

  36. Tleyjeh IM, Nada H, Baddour LM. VisualDx: decision-support software for the diagnosis and management of dermatologic disorders. Clin Infect Dis. 2007;43:1177–84. doi:10.1086/508283.

    Google Scholar 

  37. Van Vleck TT, Stein DM, Stetson PD, Johnson SB. Assessing data relevance for automated generation of a clinical summary. AMIA Annu Symp Proc. 2007;761–5.

    Google Scholar 

  38. Vardell E, Bou-Crick C. VisualDx: a visual diagnostic decision support tool. Med Ref Serv Q. 2012;31:414–24. doi:10.1080/02763869.2012.724287.

    Article  PubMed  Google Scholar 

  39. Welch BM, Loya SR, Eilbeck K, Kawamoto K. A proposed clinical decision support architecture capable of supporting whole genome sequence information. J Pers Med. 2014;4:176–99. doi:10.3390/jpm4020176.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Zhou L, Hongsermeier T, Boxwala A, et al. Structured representation for core elements of common clinical decision support interventions to facilitate knowledge sharing. Stud Health Technol Inform. 2013;192:195–9.

    PubMed  Google Scholar 

  41. Dua S, Archarya U, Dua P. Machine learning in healthcare informatics. Intelligent Systems Reference Library. 2014;56:40017. doi: 10.1007/978-3-642-40017-9.

    Google Scholar 

  42. Zorman M, Stiglic MM, Kokol P, Malcić I. The limitations of decision trees and automatic learning in real world medical decision making. J Med Syst. 1997;21:403–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. McCallie Jr. MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McCallie, D.P. (2016). Emerging Clinical Decision Support Technology for the Twenty First Century. In: Weaver, C., Ball, M., Kim, G., Kiel, J. (eds) Healthcare Information Management Systems. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-319-20765-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20765-0_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20764-3

  • Online ISBN: 978-3-319-20765-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics