Inquiry, Refutations and the Inconsistent

  • Can Başkent
Part of the Logic, Argumentation & Reasoning book series (LARI, volume 8)


In this paper, I discuss the connection between Lakatosian method of proofs and refutations, Hintikkan models of interrogative inquiry and paraconsistency. I bridge these different schools with dialectic, and their underlying reliance on the inconsistent.


Lakatos’s proofs and refutations Hintikka’s interrogative models of inquiry Paraconsistency 



I acknowledge the suggestions of the two anonymous referees. The paper has benefited a lot from the feedback of Marco Panza.


  1. Başkent, C. (2011). A logic for strategy updates. In H. van Ditmarsch & J. Lang (Eds.), Proceedings of the third international workshop on logic, rationality and interaction (LORI-3), Guangzhou (LNCS, Vol. 6953, pp. 382–3).Google Scholar
  2. Başkent, C. (2012). A formal approach to Lakatosian heuristics. Logique et Analyse, 55(217), 23–46.Google Scholar
  3. Başkent, C. (2014). Towards paraconsistent inquiry (under review).Google Scholar
  4. Başkent, C., & Bag̃çe, S. (2009). An examination of counterexamples in proofs and refutations. Philosophia Scientiae, 13(2), 3–20.Google Scholar
  5. Carnielli, W. A. (2009). Meeting hintikka’s challenge to paraconsistentism. Principia, 13(3), 283–297.CrossRefGoogle Scholar
  6. Carnielli, W. A., Coniglio, M. E., & Marcos, J. (2007). Logics of formal inconsistency. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. 14, pp. 15–107). Dordrecht/London: Springer.Google Scholar
  7. Corfield, D. (1997). Assaying Lakatos’s history and philosophy of science. Studies in History and Philosophy of Science, 28(1), 99–121.CrossRefGoogle Scholar
  8. Ficara, E. (2013). Dialectic and dialetheism. History and Philosophy of Logic, 34(1), 35–52.CrossRefGoogle Scholar
  9. Garrison, J. W. (1988). Hintikka, Laudan and Newton: An interrogative model of scientific inquiry. Synthese, 74, 145–171.CrossRefGoogle Scholar
  10. Genot, E. J. (2009). The game of inquiry: The interrogative approach to inquiry and belief revision theory. Synthese, 171(2), 271–289.CrossRefGoogle Scholar
  11. Halonen, I., & Hintikka, J. (2005). Toward a theory of the process of explanation. Synthese, 143(1), 5–61.CrossRefGoogle Scholar
  12. Hintikka, J. (1962). Knowledge and belief. Ithaca: Cornell University Press.Google Scholar
  13. Hintikka, J. (1984). The logic of science as a model-oriented logic. In PSA: Proceedings of the biennial meeting of the philosophy of science association (Vol. 1, pp. 177–185). Chicago: The University of Chicago Press.Google Scholar
  14. Hintikka, J. (1987). The interrogative approach to inquiry and probabilistic inference. Erkenntnis, 26, 429–442.CrossRefGoogle Scholar
  15. Hintikka, J. (1988). What is the logic of experimental inquiry? Synthese, 74, 173–190.CrossRefGoogle Scholar
  16. Hintikka, J. (2007). Socratic epistemology. Cambridge/New York: Cambridge University Press.CrossRefGoogle Scholar
  17. Hintikka, J. (2009). If logic meets paraconsistent logic. In W. A. Carnielli, M. E. Coniglio, & I. M. L. D’Ottaviano (Eds.), The many sides of logic (pp. 3–13). London: College Publications.Google Scholar
  18. Hintikka, J., & Harris, S. (1988). On the logic of interrogative inquiry. In PSA: Proceedings of the biennial meeting of the philosophy of science association (Vol. 1, pp. 233–240). Chicago: The University of Chicago Press.Google Scholar
  19. Hintikka, J., Halonen, I., & Mutanen, A. (2002). Interrogative logic as a general theory of reasoning. In D. Gabbay, R. H. Johnson, H. J. Ohldbach, & J. Woods (Eds.), Handbook of the logic of argument and inference (Studies in Logic and Practical Reasoning, Vol. 1, pp. 295–337). Amsterdam/Boston: North-Holland.CrossRefGoogle Scholar
  20. Jaśkowski, S. (1999). A propositional calculus for inconsistent deductive systems. Logic and Logical Philosophy, 7(1), 35–56 (translated from the 1948 original).Google Scholar
  21. Kiss, O. (2006). Heuristics, methodology or logic of discovery? Lakatos on patterns of thinking. Perspectives on Science, 14, 302–317.CrossRefGoogle Scholar
  22. Koetsier, T. (1991). Lakatos’ philosophy of mathematics: A historical approach. Amsterdam/New York: North-Holland.Google Scholar
  23. Kvasz, L. (2002). Lakatos’ methodology between logic and dialectic. In G. Kampis, L. Kvasz, & M. Stölzner (Eds.), Appraising Lakatos: Mathematics, methodology and the man. Dordrecht/Boston: Kluwer.Google Scholar
  24. Lakatos, I. (1979). Mathematics, science and epistemology. Cambridge: Cambridge University Press.Google Scholar
  25. Lakatos, I. (2005). Proofs and refutations. Cambridge: Cambridge University Press.Google Scholar
  26. Priest, G. (1989). Dialectic and dialetheic. Science & Society, 53(4), 388–415 (Winter).Google Scholar
  27. Priest, G., & Thomason, N. (2007). 60% proof – Lakatos, proof and paraconsistency. Australasian Journal of Logic, 5, 89–100.Google Scholar
  28. Rahman, S., & Carnielli, W. A. (2000). The dialogical approach to paraconsistency. Synthese, 125, 201–231.CrossRefGoogle Scholar
  29. Rahman, S., & Tulenheimo, T. (2009). From games to dialogues and back. In O. Maher, A. Pietarinen, & T. Tulenheimo (Eds.), Games: Unifying logic, language and philosophy (pp. 153–208). Dordrecht: Springer.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of BathBathUK

Personalised recommendations