Analyzing the Design Space of Personal Informatics: A State-of-practice Based Classification of Existing Tools

  • Fredrik Ohlin
  • Carl Magnus Olsson
  • Paul Davidsson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9175)

Abstract

We are presently seeing a rapid increase of tools for tracking and analyzing activities, from lifelogging in general to specific activities such as exercise tracking. Guided by the perspectives of collection, procedural, and analysis support, this paper presents the results from a review of 71 existing tools, striving to capture the design choices within personal informatics that such tools are using. The classification system this creates is a contribution in three ways: as a standalone state-of-practice representation, for assessing individual tools and potential future design directions for them, and as a guide for new development of personal informatics tools.

Keywords

Personal informatics Quantified self State-of-practice Design choices Classification 

References

  1. 1.
  2. 2.
  3. 3.
    Bentley, F., Tollmar, K., Stephenson, P., Levy, L., Jones, B., Robertson, S., Price, E., Catrambone, R., Wilson, J.: Health mashups: presenting statistical patterns between wellbeing data and context in natural language to promote behavior change. Trans. Comput.-Hum. Inter. (TOCHI) 20(5), 1–27 (2013)CrossRefGoogle Scholar
  4. 4.
    Boesel, W.E.: What is the Quantified Self now? May 2013. http://thesocietypages.org/cyborgology/2013/05/22/what-is-the-quantified-self-now/
  5. 5.
  6. 6.
  7. 7.
    Choe, E.K., Lee, N.B., Lee, B., Pratt, W., Kientz, J.A.: Understanding quantified-selfers’ practices in collecting and exploring personal data. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2014, pp. 1143–1152. ACM, New York (2014)Google Scholar
  8. 8.
  9. 9.
    Corbin, J., Strauss, A.: Grounded theory research: procedures, canons, and evaluative criteria. Qual. Sociol. 13(1), 3–21 (1990)CrossRefGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
  13. 13.
    Fit simply. http://www.fitly.io
  14. 14.
  15. 15.
    Fogg, B.J.: Persuasive Technology. Morgan Kaufmann, San Francisco (2003)Google Scholar
  16. 16.
    Fritz, T., Huang, E.M., Murphy, G.C., Zimmermann, T.: Persuasive technology in the real world: a study of long-term use of activity sensing devices for fitness. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2014, pp. 487–496. ACM, New York (2014)Google Scholar
  17. 17.
  18. 18.
    i.strive.to. http://i.strive.to
  19. 19.
  20. 20.
    Jawbone up coffee. https://jawbone.com/up/coffee
  21. 21.
    Joe’s goals. http://www.joesgoals.com
  22. 22.
    Khovanskaya, V., Baumer, E.P.S., Cosley, D., Voida, S., Gay, G.: “Everybody knows what you’re doing”: a critical design approach to personal informatics. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 3403–3412. ACM, New York (2013)Google Scholar
  23. 23.
    Li, I., Dey, A., Forlizzi, J.: A stage-based model of personal informatics systems. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2010, pp. 557–566. ACM, New York (2010)Google Scholar
  24. 24.
  25. 25.
  26. 26.
  27. 27.
  28. 28.
    Personal informatics tools. http://www.personalinformatics.org/tools/, Retrieved 2014–06-06
  29. 29.
    Pirzadeh, A., He, L., Stolterman, E.: Personal informatics and reflection: a critical examination of the nature of reflection. In: CHI 2013 Extended Abstracts on Human Factors in Computing Systems, pp. 1979–1988. ACM, New York (2013)Google Scholar
  30. 30.
  31. 31.
  32. 32.
    Rooksby, J., Rost, M., Morrison, A., Chalmers, M.C.: Personal tracking as lived informatics. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2014, pp. 1163–1172. ACM, New York (2014)Google Scholar
  33. 33.
  34. 34.
  35. 35.
  36. 36.
    Shilton, K.: Participatory personal data: an emerging research challenge for the information sciences. J. Am. Soc. Inform. Sci. Technol. 63(10), 1905–1915 (2012)CrossRefGoogle Scholar
  37. 37.
  38. 38.
    Swan, M.: The quantified self: fundamental disruption in big data science and biological discovery. Big Data 1(2), 85–99 (2013)CrossRefGoogle Scholar
  39. 39.
  40. 40.
  41. 41.
  42. 42.
  43. 43.
    your.flowingdata. http://your.flowingdata.com

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fredrik Ohlin
    • 1
    • 2
  • Carl Magnus Olsson
    • 1
    • 2
  • Paul Davidsson
    • 1
    • 2
  1. 1.Department of Computer ScienceMalmö UniversityMalmöSweden
  2. 2.Internet of Things and People Research CenterMalmö UniversityMalmöSweden

Personalised recommendations