Advertisement

Robot-Assisted Partial Nephrectomy for Complex Renal Tumors

  • Deepansh Dalela
  • Craig Rogers
Chapter

Abstract

Partial nephrectomy (PN), whether using open or robotic approach, is an oncologically safe alternative for radical nephrectomy (RN) in appropriately selected patients with renal cell cancer (RCC). As urologists become increasingly facile with the robotic platform, robot-assisted partial nephrectomy (RAPN) will be increasingly performed in patients with complex renal tumors. These include tumors that are completely endophytic or hilar in location, ≥cT1b, tumors with a high RENAL nephrometry score, multiple tumors, or tumors in patients with solitary kidney or significant chronic kidney disease (CKD). While the “trifecta” of negative surgical margins, minimal renal functional decline and no urologic complications remains the ideal goal for any PN, its attainment may pose unique surgical challenges in patients with complex renal tumors. In this chapter, we describe some of the approaches for such patients, tailored to the specific clinical presentation. General considerations to optimize outcomes in such cases include additional assistant ports, judicious use of the 4th robotic arm, and use of pre-clamp check lists. Specific technical maneuvers include use of intraoperative ultrasound probes (for endophytic tumors), tumor enucleation/enucleoresection and modified renorrhaphy techniques (for hilar tumors), cutting wide and deep without excess traction (in cases of cystic/≥cT1b tumors), and minimizing warm ischemia (‘on-demand’ ischemia and early unclamping of the main renal artery, selective clamping of tumor specific arteries, or regional hypothermia) in patients with multiple renal tumors, solitary kidney or pre-existing CKD.

Keywords

Robot-assisted partial nephrectomy Complex tumors Renal cell cancer Hilar tumors Endophytic tumors cT1b tumors 

References

  1. 1.
    Campbell SC, Novick AC, Belldegrun A, Blute ML, Chow GK, Derweesh IH, et al. Guideline for management of the clinical T1 renal mass. J Urol. 2009;182(4):1271–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67(5):913–24.PubMedCrossRefGoogle Scholar
  3. 3.
    Motzer RJ, Jonasch E, Agarwal N, Beard C, Bhayani S, Bolger GB, et al. Kidney cancer, version 3.2015. J Natl Compr Cancer Netw. 2015;13(2):151–9.CrossRefGoogle Scholar
  4. 4.
    Van Poppel H, Da Pozzo L, Albrecht W, Matveev V, Bono A, Borkowski A, et al. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol. 2011;59(4):543–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Scosyrev E, Messing EM, Sylvester R, Campbell S, Van Poppel H. Renal function after nephron-sparing surgery versus radical nephrectomy: results from EORTC randomized trial 30904. Eur Urol. 2014;65(2):372–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.PubMedCrossRefGoogle Scholar
  7. 7.
    Tan HJ, Norton EC, Ye Z, Hafez KS, Gore JL, Miller DC. Long-term survival following partial vs radical nephrectomy among older patients with early-stage kidney cancer. JAMA. 2012;307(15):1629–35.PubMedCrossRefGoogle Scholar
  8. 8.
    Capitanio U, Terrone C, Antonelli A, Minervini A, Volpe A, Furlan M, et al. Nephron-sparing techniques independently decrease the risk of cardiovascular events relative to radical nephrectomy in patients with a T1a-T1b renal mass and normal preoperative renal function. Eur Urol. 2015;67(4):683–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Ghani KR, Sukumar S, Sammon JD, Rogers CG, Trinh QD, Menon M. Practice patterns and outcomes of open and minimally invasive partial nephrectomy since the introduction of robotic partial nephrectomy: results from the nationwide inpatient sample. J Urol. 2014;191(4):907–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Dulabon LM, Kaouk JH, Haber GP, Berkman DS, Rogers CG, Petros F, et al. Multi-institutional analysis of robotic partial nephrectomy for hilar versus nonhilar lesions in 446 consecutive cases. Eur Urol. 2011;59(3):325–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Gorin MA, Ball MW, Pierorazio PM, Tanagho YS, Bhayani SB, Kaouk JH, et al. Outcomes and predictors of clinical T1 to pathological T3a tumor up-staging after robotic partial nephrectomy: a multi-institutional analysis. J Urol. 2013;190(5):1907–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Kumar RK, Sammon JD, Kaczmarek BF, Khalifeh A, Gorin MA, Sivarajan G, et al. Robot-assisted partial nephrectomy in patients with baseline chronic kidney disease: a multi-institutional propensity score-matched analysis. Eur Urol. 2014;65(6):1205–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Long JA, Yakoubi R, Lee B, Guillotreau J, Autorino R, Laydner H, et al. Robotic versus laparoscopic partial nephrectomy for complex tumors: comparison of perioperative outcomes. Eur Urol. 2012;61(6):1257–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Patel MN, Krane LS, Bhandari A, Laungani RG, Shrivastava A, Siddiqui SA, et al. Robotic partial nephrectomy for renal tumors larger than 4 cm. Eur Urol. 2010;57(2):310–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Petros FG, Patel MN, Kheterpal E, Siddiqui S, Ross J, Bhandari A, et al. Robotic partial nephrectomy in the setting of prior abdominal surgery. BJU Int. 2011;108(3):413–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Rogers CG, Ghani KR, Kumar RK, Jeong W, Menon M. Robotic partial nephrectomy with cold ischemia and on-clamp tumor extraction: recapitulating the open approach. Eur Urol. 2013;63(3):573–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Rogers CG, Singh A, Blatt AM, Linehan WM, Pinto PA. Robotic partial nephrectomy for complex renal tumors: surgical technique. Eur Urol. 2008;53(3):514–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Volpe A, Garrou D, Amparore D, De Naeyer G, Porpiglia F, Ficarra V, et al. Perioperative and renal functional outcomes of elective robot-assisted partial nephrectomy (RAPN) for renal tumours with high surgical complexity. BJU Int. 2014;114(6):903–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang Y, Ma X, Huang Q, Du Q, Gong H, Shang J, et al. Comparison of robot-assisted and laparoscopic partial nephrectomy for complex renal tumours with a RENAL nephrometry score >/=7: peri-operative and oncological outcomes. BJU Int. 2016;117(1):126–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang Y, Shao J, Ma X, Du Q, Gong H, Zhang X. Robotic and open partial nephrectomy for complex renal tumors: a matched-pair comparison with a long-term follow-up. World J Urol. 2017;35(1):73–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Kaczmarek BF, Sukumar S, Kumar RK, Desa N, Jost K, Diaz M, et al. Comparison of robotic and laparoscopic ultrasound probes for robotic partial nephrectomy. J Endourol. 2013;27(9):1137–40.PubMedCrossRefGoogle Scholar
  22. 22.
    Minervini A, Carini M, Uzzo RG, Campi R, Smaldone MC, Kutikov A. Standardized reporting of resection technique during nephron-sparing surgery: the surface-intermediate-base margin score. Eur Urol. 2014;66(5):803–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Minervini A, di Cristofano C, Lapini A, Marchi M, Lanzi F, Giubilei G, et al. Histopathologic analysis of peritumoral pseudocapsule and surgical margin status after tumor enucleation for renal cell carcinoma. Eur Urol. 2009;55(6):1410–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Lane BR, Gill IS, Fergany AF, Larson BT, Campbell SC. Limited warm ischemia during elective partial nephrectomy has only a marginal impact on renal functional outcomes. J Urol. 2011;185(5):1598–603.PubMedCrossRefGoogle Scholar
  25. 25.
    Mir MC, Campbell RA, Sharma N, Remer EM, Simmons MN, Li J, et al. Parenchymal volume preservation and ischemia during partial nephrectomy: functional and volumetric analysis. Urology. 2013;82(2):263–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Simmons MN, Hillyer SP, Lee BH, Fergany AF, Kaouk J, Campbell SC. Functional recovery after partial nephrectomy: effects of volume loss and ischemic injury. J Urol. 2012;187(5):1667–73.PubMedCrossRefGoogle Scholar
  27. 27.
    Simmons MN, Lieser GC, Fergany AF, Kaouk J, Campbell SC. Association between warm ischemia time and renal parenchymal atrophy after partial nephrectomy. J Urol. 2013;189(5):1638–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Khalifeh A, Autorino R, Hillyer SP, Kaouk JH. V-hilar suture renorrhaphy during robotic partial nephrectomy for renal hilar tumors: preliminary outcomes of a novel surgical technique. Urology. 2012;80(2):466–71.PubMedCrossRefGoogle Scholar
  29. 29.
    Janda G, Deal A, Yang H, Nielsen M, Smith A, Pruthi RS, et al. Single-institution experience with robotic partial nephrectomy for renal masses greater than 4 cm. J Endourol. 2016;30(4):384–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Bi L, Zhang C, Li K, Fan X, Xu K, Han J, et al. Robotic partial nephrectomy for renal tumors larger than 4 cm: a systematic review and meta-analysis. PLoS One. 2013;8(10):e75050.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Tiu A, Kim KH, Shin TY, Han WK, Han SW, Rha KH. Feasibility of robotic laparoendoscopic single-site partial nephrectomy for renal tumors >4 cm. Eur Urol. 2013;63(5):941–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Hillyer SP, Bhayani SB, Allaf ME, Rogers CG, Stifelman MD, Tanagho Y, et al. Robotic partial nephrectomy for solitary kidney: a multi-institutional analysis. Urology. 2013;81(1):93–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Parekh DJ, Weinberg JM, Ercole B, Torkko KC, Hilton W, Bennett M, et al. Tolerance of the human kidney to isolated controlled ischemia. J Am Soc Nephrol. 2013;24(3):506–17.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lane BR, Russo P, Uzzo RG, Hernandez AV, Boorjian SA, Thompson RH, et al. Comparison of cold and warm ischemia during partial nephrectomy in 660 solitary kidneys reveals predominant role of nonmodifiable factors in determining ultimate renal function. J Urol. 2011;185(2):421–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Simone G, Gill IS, Mottrie A, Kutikov A, Patard JJ, Alcaraz A, et al. Indications, techniques, outcomes, and limitations for minimally ischemic and off-clamp partial nephrectomy: a systematic review of the literature. Eur Urol. 2015;68(4):632–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Bollens R, Rosenblatt A, Espinoza BP, De Groote A, Quackels T, Roumeguere T, et al. Laparoscopic partial nephrectomy with “on-demand” clamping reduces warm ischemia time. Eur Urol. 2007;52(3):804–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Baumert H, Ballaro A, Shah N, Mansouri D, Zafar N, Molinie V, et al. Reducing warm ischaemia time during laparoscopic partial nephrectomy: a prospective comparison of two renal closure techniques. Eur Urol. 2007;52(4):1164–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Peyronnet B, Baumert H, Mathieu R, Masson-Lecomte A, Grassano Y, Roumiguie M, et al. Early unclamping technique during robot-assisted laparoscopic partial nephrectomy can minimise warm ischaemia without increasing morbidity. BJU Int. 2014;114(5):741–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Nguyen MM, Gill IS. Halving ischemia time during laparoscopic partial nephrectomy. J Urol. 2008;179(2):627–32. discussion 32PubMedCrossRefGoogle Scholar
  40. 40.
    Williams SB, Kacker R, Alemozaffar M, Francisco IS, Mechaber J, Wagner AA. Robotic partial nephrectomy versus laparoscopic partial nephrectomy: a single laparoscopic trained surgeon’s experience in the development of a robotic partial nephrectomy program. World J Urol. 2013;31(4):793–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Nohara T, Fujita H, Yamamoto K, Kitagawa Y, Gabata T, Namiki M. Modified anatrophic partial nephrectomy with selective renal segmental artery clamping to preserve renal function: a preliminary report. Int J Urol. 2008;15(11):961–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Shao P, Qin C, Yin C, Meng X, Ju X, Li J, et al. Laparoscopic partial nephrectomy with segmental renal artery clamping: technique and clinical outcomes. Eur Urol. 2011;59(5):849–55.PubMedCrossRefGoogle Scholar
  43. 43.
    Qian J, Li P, Qin C, Zhang S, Bao M, Liang C, et al. Laparoscopic partial nephrectomy with precise segmental renal artery clamping for clinical T1b tumors. J Endourol. 2015;29(12):1386–91.PubMedCrossRefGoogle Scholar
  44. 44.
    Gill IS, Eisenberg MS, Aron M, Berger A, Ukimura O, Patil MB, et al. “Zero ischemia” partial nephrectomy: novel laparoscopic and robotic technique. Eur Urol. 2011;59(1):128–34.PubMedCrossRefGoogle Scholar
  45. 45.
    Ng CK, Gill IS, Patil MB, Hung AJ, Berger AK, de Castro Abreu AL, et al. Anatomic renal artery branch microdissection to facilitate zero-ischemia partial nephrectomy. Eur Urol. 2012;61(1):67–74.PubMedCrossRefGoogle Scholar
  46. 46.
    McClintock TR, Bjurlin MA, Wysock JS, Borofsky MS, Marien TP, Okoro C, et al. Can selective arterial clamping with fluorescence imaging preserve kidney function during robotic partial nephrectomy? Urology. 2014;84(2):327–32.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Navarro AP, Sohrabi S, Colechin E, Griffiths C, Talbot D, Soomro NA. Evaluation of the ischemic protection efficacy of a laparoscopic renal cooling device using renal transplantation viability assessment criteria in a porcine model. J Urol. 2008;179(3):1184–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Shikanov S, Wille M, Large M, Razmaria A, Lifshitz DA, Chang A, et al. Microparticulate ice slurry for renal hypothermia: laparoscopic partial nephrectomy in a porcine model. Urology. 2010;76(4):1012–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Kijvikai K, Viprakasit DP, Milhoua P, Clark PE, Herrell SD. A simple, effective method to create laparoscopic renal protective hypothermia with cold saline surface irrigation: clinical application and assessment. J Urol. 2010;184(5):1861–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Landman J, Venkatesh R, Lee D, Vanlangendonck R, Morissey K, Andriole GL, et al. Renal hypothermia achieved by retrograde endoscopic cold saline perfusion: technique and initial clinical application. Urology. 2003;61(5):1023–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vattikuti Urology Institute and VUI Center for Outcomes Research Analytics and EvaluationHenry Ford HospitalDetroitUSA
  2. 2.VUI Center for Outcomes Research Analytics and Evaluation, Vattikuti Urology Institute, Henry Ford Health System, Henry Ford HospitalWayne State University School of MedicineDetroitUSA

Personalised recommendations