Current Concepts in Cavernosal Neural Anatomy and Imaging and Their Implications for Nerve-Sparing Radical Prostatectomy

  • Daniel Sagalovich
  • Thomas Bessede
  • Ashutosh K. TewariEmail author


Much of the progress achieved in the past 2 decades in improving potency outcomes after radical prostatectomy has been wrought through an improved appreciation of the anatomic basis of the nerves responsible for erections. Recent advances in the anatomical course of these cavernosal nerves have led to various innovative techniques for improving nerve-sparing radical prostatectomy. Developments in various imaging technologies have led urologists to explore the potential for improved visualization of the erectogenic neural scaffold during nsRP.


Prostate cancer Radical prostatectomy Nerve-sparing Cavernosal neural anatomy 


  1. 1.
    Bill-Axelson A, Holmberg L, Ruutu M, Häggman M, Andersson SO, Bratell S, et al. Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med. 2005;352(19):1977–84.CrossRefPubMedGoogle Scholar
  2. 2.
    Tewari A, Johnsson CC, Devine G, Crawford ED, Gamito EJ, Demers R, et al. Long-term survival probability in men with clinically localized prostate cancer: a case-control, propensity modeling study stratified by race, age, treatment and co-morbidities. J Urol. 2004;171:1513–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Zippe C, Nandipati K, Agarwal A, Raina R. Sexual dysfunction after pelvic surgery. Int J Impot Res. 2006;18:1–18.CrossRefPubMedGoogle Scholar
  4. 4.
    Berryhill R Jr, Jhaveri J, Yadav R, Leung R, Rao S, El-Hakim A, et al. Robotic prostatectomy: a review of outcomes compared with laparoscopic and open approaches. Urology. 2008;72:15–23.CrossRefPubMedGoogle Scholar
  5. 5.
    Ficarra V, Novara G, Artibani W, Cestari A, Galfano A, Graefen M, et al. Retropubic, laparoscopic and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol. 2009;55:1037–63.CrossRefPubMedGoogle Scholar
  6. 6.
    Penson DF, Feng Z, Kuniyuki A, McClerran D, Albertsen PC, Deapen D, et al. General quality of life 2 years following treatment for prostate cancer: what influences out- comes? Results from the prostate cancer outcomes study. J Clin Oncol. 2003;21:1147–54.CrossRefPubMedGoogle Scholar
  7. 7.
    Kirschner-Hermanns R, Jakse G. Quality of life following radical prostatectomy. Crit Rev Oncol Hematol. 2002;43:141–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Quinlan DM, Epstein JI, Carter BS, Walsh PC. Sexual function following radical prostatectomy: influence of preservation of neurovascular bundles. J Urol. 1991;145:998–1002.CrossRefPubMedGoogle Scholar
  9. 9.
    Rabbani F, Stapleton AM, Kattan MW, Wheeler TM, Scardino PT. Factors predicting recovery of erections after radical prostatectomy. J Urol. 2000;164(6):1929–34.CrossRefPubMedGoogle Scholar
  10. 10.
    Dubbelman YD, Dohle GR, Schroder FH. Sexual function before and after radical retropubic prostatectomy: a systematic review of prognostic indicators for a successful outcome. Eur Urol. 2006;50:711–20.CrossRefPubMedGoogle Scholar
  11. 11.
    McCullough AR. Rehabilitation of erectile function following radical prostatectomy. Asian J Androl. 2008;10(1):61–74.CrossRefPubMedGoogle Scholar
  12. 12.
    Bianco F, Kattan M, Eastham J, Scardino P, Mulhall JP. Surgeon and surgical volume as predictors of erectile function outcomes following radical prostatectomy. J Sex Med. 2004;1:33.Google Scholar
  13. 13.
    Kim ED, Blackburn D, McVary KT. Post-radical prostatectomy penile blood flow: assessment with color Doppler ultrasound. J Urol. 1994;152:2276–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Mulhall JP, Slovick R, Hotaling J, Aviv N, Valenzuela R, Waters WB, et al. Erectile dysfunction after radical prostatectomy: haemodynamic profiles and their correlation with the recovery of erectile function. J Urol. 2002;167:1371–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Kawanishi Y, Lee KS, Kimura K, Kojima K, Yamamoto A, Numata A. Effect of radical retropubic prostatectomy on erectile function, evaluated before and after surgery using color Doppler ultrasonography and nocturnal penile tumescence monitoring. BJU Int. 2001;88:244–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Walz J, Graefen M, Huland H. Basic principles of anatomy for optimal surgical management of prostate cancer. World J Urol. 2007;25:31–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Walsh PC, Donker PJ. Impotence following radical prostatectomy: insight into etiology and prevention. J Urol. 1982;128:492–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Lepor H, Gregerman M, Crosby R, Mostofi FK, Walsh PC. Precise localization of the autonomic nerves from the pelvic plexus to the corpora cavernosa: a detailed anatom- ical study of the adult male pelvis. J Urol. 1985;133:207–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Walsh PC. Anatomic radical prostatectomy: evolution of surgical technique. J Urol. 1998;160:2418–24.CrossRefPubMedGoogle Scholar
  20. 20.
    Costello AJ, Brooks M, Cole OJ. Anatomical studies of the neurovascular bundle and cavernosal nerves. BJU Int. 2004;94:1071–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Takenaka A, Murakami G, Matsubara A, Han SH, Fujisawa M. Variation in course of cavernous nerve with special reference to details of topographic relationships near prostatic apex: histologic study using male cadavers. Urology. 2005;65:136–42.CrossRefPubMedGoogle Scholar
  22. 22.
    Kiyoshima K, Yokomizo A, Yoshida T, Tomita K, Yonemasu H, Nakamura M, et al. Anatomic features of periprostatic tissue and its surroundings: a histological analysis of 79 radical retropubic prostatectomy specimens. Jpn J Clin Oncol. 2004;34:463–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Eichelberg C, Erbersdobler A, Michl U, Schlomm T, Salomon G, Graefen M, et al. Nerve distribution along the prostatic capsule. Eur Urol. 2007;51(1):105–11.CrossRefPubMedGoogle Scholar
  24. 24.
    Clarebrough EE, Challacombe BJ, Briggs C, Namdarian B, Weston R, Murphy DG, et al. Cadaveric analysis of periprostatic nerve distribution: an anatomical basis for high anterior release during radical prostatectomy? J Urol. 2012;185:1519–25.CrossRefGoogle Scholar
  25. 25.
    Alsaid B, Bessede T, Diallo D, Moszkowicz D, Karam I, Benoit G, et al. Division of autonomic nerves within the neurovascular bundles distally into corpora cavernosa and corpus spongiosum components: immunohistochemical confirmation with three-dimensional reconstruction. Eur Urol. 2011;59:902–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Tewari A, Takenaka A, Mtui E, Horninger W, Peschel R, Bartsch G, et al. The proximal neurovascular plate and the tri-zonal neural architecture around the prostate gland: importance in the athermal robotic technique of nerve-sparing prostatectomy. BJU Int. 2006;98:318–23.Google Scholar
  27. 27.
    Tewari A, Tan GY, Dorsey PJ Jr, et al. Optimizing erectogenic outcomes during athermal robotic prostatectomy: a risk-stratified tri-zonal approach. Urol Times. 2008;3:s4–s12.Google Scholar
  28. 28.
    Tewari A, Peabody JO, Fischer M, Sarle R, Vallancien G, Delmas V, et al. An operative and anatomic study to help in nerve-sparing during laparoscopic and robotic radical prostatectomy. Eur Urol. 2003;43:444–54.CrossRefPubMedGoogle Scholar
  29. 29.
    Sagalovich D, Calaway A, Srivastava A, Sooriakumaran P, Tewari AK. Assessment of required nodal yield in a high risk cohort undergoing extended pelvic lymphadenectomy in robotic-assisted radical prostatectomy and its impact on functional outcomes. BJU Int. 2012;111:85–94.CrossRefPubMedGoogle Scholar
  30. 30.
    van der Poel HG, Tillier C, de Blok W, van Muilekom E. Extended nodal dissection reduces sexual function recovery after robot-assisted laparoscopic prostatectomy. J Endourol. 2012;26:1192–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Tewari AK, Patel ND, Leung RA, Yadav R, Vaughan ED, El-Douaihy Y, et al. Visual cues as a surrogate for tactile feedback during robotic-assisted laparoscopic prostatectomy: posterolateral margin rates in 1340 consecutive patients. BJU Int. 2010;106(4):528–36.CrossRefPubMedGoogle Scholar
  32. 32.
    Walz J, Epstein JI, Ganzer R, Graefen M, Guazzoni G, Kaouk J, et al. A critical analysis of the current knowledge of surgical anatomy of the prostate related to optimisation of cancer control and preservation of continence and erection in candidates for radical prostatectomy: an update. Eur Urol. 2016;70(2):301–11.CrossRefPubMedGoogle Scholar
  33. 33.
    Ayala AG, Ro JY, Babaian R, Troncoso P, Grignon DJ. The prostatic capsule: does it exist? Its importance in the staging and treatment of prostatic carcinoma. Am J Surg Pathol. 1989;13:21–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Budaus L, Isbarn H, Schlomm T, Heinzer H, Haese A, Steuber T, et al. Current technique of open intrafascial nerve-sparing retropubic prostatectomy. Eur Urol. 2009;56:317–24.CrossRefPubMedGoogle Scholar
  35. 35.
    Walsh PC. Anatomic radical retropubic prostatectomy. In: Walsh PC, Retik AB, Vaughan ED Jr, Wein AJ, eds. Campbell’s urology, 4., Chapter 90. 8th edn. Philadelphia: WB Saunders; 2002: p3107–p3129.Google Scholar
  36. 36.
    Ruckle HC, Zincke H. Potency sparing radical retropubic prostatectomy: a simplified anatomical approach. J Urol. 1995;153:1875–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Goad JR, Scardino PT. Modifications in the technique of radical prostatectomy to minimize blood loss. Atlas Urol Clin North Am. 1994;3:65–80.Google Scholar
  38. 38.
    Klein EA, Kupelian PA, Tuason L, Levin HS. Initial dissection of the lateral fascia reduces the positive margin rate in radical prostatectomy. Urology. 1998;51:766–73.CrossRefPubMedGoogle Scholar
  39. 39.
    Savera AT, Kaul S, Badani K, Stark AT, Shah NL, Menon M. Robotic radical prostatectomy with the “Veil of Aphrodite” technique: histologic evidence of enhanced nerve sparing. Eur Urol. 2006;49:1065–74.CrossRefPubMedGoogle Scholar
  40. 40.
    Kaul S, Savera A, Badani K, Fumo M, Bhandari A, Menon M. Functional outcomes and oncological efficacy of Vattikuti Institute prostatectomy with Veil of Aphrodite nerve-sparing: an analysis of 154 consecutive patients. BJU Int. 2006;97:467–72.CrossRefPubMedGoogle Scholar
  41. 41.
    Stolzenburg JU, Rabenalt R, Do M, Schwalenberg T, Winkler M, Dietel A, et al. Intrafascial nerve-sparing endoscopic extraperitoneal radical prostatectomy. Eur Urol. 2008;53:931–40.CrossRefPubMedGoogle Scholar
  42. 42.
    Nielsen ME, Schaeffer EM, Marschke P, Walsh PC. High anterior release of the levator fascia improves sexual function following open radical retropubic prostatectomy. J Urol. 2008;180:2557–64.CrossRefPubMedGoogle Scholar
  43. 43.
    Dorsey P Jr, Tan G, Jhaveri J, et al. Early return of potency and orgasmic function during aggressive bilateral intrafascial nerve-sparing during trizonal athermal robotic prostatectomy: a prospective cohort study. (Abstract) CUAJ. 2009;3(3 Suppl 1):S11 (POD-3.03).Google Scholar
  44. 44.
    Tewari AK, Srivastava A, Huang MW, Robinson BD, Shevchuk MM, Durand M, et al. Anatomical grades of nerve sparing: a risk-stratified approach to neural-hammock sparing during robot-assisted radical prostatectomy (RARP). BJU Int. 2011;108:984–92.CrossRefPubMedGoogle Scholar
  45. 45.
    Lantis JC, Durville FM, Connolly R, Schwaitzberg SD. Comparison of coagulation modalities in surgery. J Laparoendosc Adv Surg Tech A. 1998;8:381–94.CrossRefPubMedGoogle Scholar
  46. 46.
    Ong AM, Su LM, Varkarakis I, Inagaki T, Link RE, Bhayani SB, et al. Nerve sparing radical prostatectomy: effects of hemostatic energy sources on the recovery of cavernous nerve function in a canine model. J Urol. 2004;172:1318–22.CrossRefPubMedGoogle Scholar
  47. 47.
    Ahlering TE, Rodriquez E, Skarecky DW. Overcoming obstacles: nerve-sparing issues in radical prostatectomy. J Endourol. 2008;22:745–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Mandhani A, Dorsey PJ Jr, Ramanathan R, et al. Real time monitoring of temperature changes in neurovascular bundles during robotic radical prostatectomy: thermal map for nerve-sparing radical prostatectomy. J Endourol. 2008;22:2313–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Khan F, Rodriguez E, Finley DS, Skarecky DW, Ahlering TE. Spread of thermal energy and heat sinks: implications for nerve-sparing robotic prostatectomy. J Endourol. 2007;21:1195–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Ahlering TE, Eichel L, Chou D, Skarecky DW. Feasibility study for robotic radical prostatectomy cautery-free neurovascular bundle preservation. Urology. 2005;65:994–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Chien GW, Mikhail AA, Orvieto MA, Zagaja GP, Sokoloff MH, Brendler CB, et al. Modified clipless antegrade nerve preservation in robotic-assisted laparoscopic radical prostatectomy with validated sexual function evaluation. Urology. 2005;66:419–23.CrossRefPubMedGoogle Scholar
  52. 52.
    Gill IS, Ukimura O, Rubinstein M, Finelli A, Moinzadeh A, Singh D, et al. Lateral pedicle control during laparoscopic radical prostatectomy: refined technique. Urology. 2005;65:23–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Haber G, Aron M, Ukimura O, Gill IS. Energy-free nerve-sparing laparoscopic radical prostatectomy: the bulldog technique. BJU Int. 2008;102:1766–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Gianduzzo TRJ, Colombo JR Jr, Haber GP, Magi-Galluzzi C, Dall'Oglio MF, Ulchaker J, et al. KTP laser nerve sparing radical prostatectomy: comparison of ultrasonic and cold scissor dissection on cavernous nerve function. J Urol. 2009;181:2760–6.CrossRefPubMedGoogle Scholar
  55. 55.
    Quinlan DM, Nelson RJ, Walsh PC. Cavernous nerve grafts restore erectile function in denervated rats. J Urol. 1991;145:380–3.CrossRefPubMedGoogle Scholar
  56. 56.
    Kim ED, Scardino PT, Hampel O, Mills NL, Wheeler TM, Nath RK. Interposition of sural nerve restores function of cavernous nerves resected during radical prostatectomy. J Urol. 1999;161:188–92.CrossRefPubMedGoogle Scholar
  57. 57.
    Kim ED, Nath R, Slawin K, Kadmon D, Miles BJ, Scardino PT. Bilateral nerve grafting during radical retropubic prostatectomy: extended follow-up. Urology. 2001;58:983–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Turk IA, Deger S, Morgan WR, Davis JW, Schelhammer PF, Loening SA. Sural nerve graft during laparoscopic radical prostatectomy: initial experience. Urol Oncol. 2002;7:191–4.CrossRefPubMedGoogle Scholar
  59. 59.
    Kaouk JH, Desai MM, Abreu SC, Papay F, Gill IS. Robotic assisted laparoscopic sural nerve grafting during radical prostatectomy: initial experience. J Urol. 2003;170:909–12.CrossRefPubMedGoogle Scholar
  60. 60.
    Davis JW, Chang DW, Chevray P, Wang R, Shen Y, Wen S, et al. Randomized phase II trial evaluation of erectile function after attempted unilateral cavernous nerve-sparing retropubic radical prostatectomy with versus without unilateral sural nerve grafting for clinically localized prostate cancer. Eur Urol. 2009;55:1135–44.CrossRefPubMedGoogle Scholar
  61. 61.
    Martinez-Salamanca JI, Rao S, Ramanathan R, Gonzalez J, Mandhani A, Yang X, et al. Nerve advancement with end-to-end reconstruction after partial neurovascular bundle resection: a feasibility study. J Endourol. 2007;21:830–5.CrossRefPubMedGoogle Scholar
  62. 62.
    Patel VR, Samavedi S, Bates AS, Kumar A, Coelho R, Rocco B, et al. Dehydrated human amnion/chorion membrane allograft nerve wrap around the prostatic neurovascular bundle accelerates early return to continence and potency following robot-assisted radical prostatectomy: propensity score-matched analysis. Eur Urol. 2015;67(6):977–80.CrossRefPubMedGoogle Scholar
  63. 63.
    Raina R, Pahlajani G, Agarwal A, Zippe CD. Early penile rehabilitation following radical prostatectomy: cleveland clinic experience. Int J Impot Res. 2008;20:121–6.CrossRefPubMedGoogle Scholar
  64. 64.
    May F, Vroemen M, Matiasek K, Henke J, Brill T, Lehmer A, et al. Nerve replacement strategies for cavernous nerves. Eur Urol. 2005;48:372–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Conolly SS, Yoo JJ, Abouheba M, Soker S, McDougal WS, Atala A. Cavernous nerve regeneration using acellular nerve grafts. World J Urol. 2008;26:333–9.CrossRefGoogle Scholar
  66. 66.
    Bochinski D, Lin GT, Nunes L, Carrion R, Rahman N, Lin CS, et al. The effect of neural embryonic stem cell therapy is a rat model of cavernosal nerve injury. BJU Int. 2004;94:904–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Hsieh PS, Bochinski DJ, Lin GT, Nunes L, Lin CS, Lue TF. The effect of vascular endothelial growth factor and brain-derived neurotrophic factor on cavernosal nerve regeneration in a nerve-crush rat model. BJU Int. 2003;92:470–5.CrossRefPubMedGoogle Scholar
  68. 68.
    Schlomm T, Tennstedt P, Huxhold C, Steuber T, Salomon G, Michl U, et al. Neurovascular structure-adjacent frozen-section examination (NeuroSAFE) increases nerve-sparing frequency and reduces positive surgical margins in open and robot-assisted laparoscopic radical prostatectomy: experience after 11,069 consecutive patients. Eur Urol. 2012;62:333–40.CrossRefPubMedGoogle Scholar
  69. 69.
    Beyer B, Schlomm T, Tennstedt P, Boehm K, Adam M, Schiffmann J, et al. A feasible and time-efficient adaptation of neurosafe for Da Vinci robot-assisted radical prostatectomy. Eur Urol. 2014;66:138–44.CrossRefPubMedGoogle Scholar
  70. 70.
    Chuang MS, O-Connor RC, Laven BA, Orvieto MA, Brendler CB. Early release of the neurovascular bundles and optical loupe magnification lead to improved and earlier return of potency following radical retropubic prostatectomy. J Urol. 2005;173:537–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Magera JS, Inman BA, Slezak JM, Bagniewski SM, Sebo TJ, Myers RP. Increased optical magnification from 2.5× to 4.3× with technical modification lowers the positive margin rate in open radical retropubic prostatectomy. J Urol. 2008;179:130–5.CrossRefPubMedGoogle Scholar
  72. 72.
    Klotz L, Herschorn S. Early experience with intraoperative cavernous nerve stimulation with penile tumescence monitoring to improve nerve sparing during radical prostatectomy. Urology. 1998;52:537–42.CrossRefPubMedGoogle Scholar
  73. 73.
    Walsh PC, Marschke P, Catalona WJ, Lepor H, Martin S, Myers RP, et al. Efficacy of first-generation cavermap to verify location and function of cavernous nerves during radical prostatectomy: a multi-institutional evaluation by experienced surgeons. Urology. 2001;57:491–4.CrossRefPubMedGoogle Scholar
  74. 74.
    Holzbeierlein J, Peterson M, Smith JA Jr. Variability of results of cavernous nerve stimulation during radical prostatectomy. J Urol. 2001;165:108–10.CrossRefPubMedGoogle Scholar
  75. 75.
    Ukimura O, Gill IS, Desai MM, Steinberg AP, Kilciler M, Ng CS, et al. Real-time transrectal ultrasonography during laparoscopic radical prostatectomy. J Urol. 2004;172:112–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Fried NM, Rias-Bahrami S, Lagoda GA, Chuang Y, Burnett AL, Su LM. Imaging the cavernous nerves in the rat prostate using optical coherence tomography. Lasers Surg Med. 2007;39:36–41.CrossRefPubMedGoogle Scholar
  78. 78.
    Rias-Bahrami S, Levinson AW, Fried NM, Lagoda GA, Hristov A, Chuang Y, et al. Optical coherence tomography of cavernous nerves: a step toward real-time intraoperative imaging during nerve-sparing radical prostatectomy. Urology. 2008;72:198–204.CrossRefGoogle Scholar
  79. 79.
    Aron M, Kaouk JH, Hegarty NJ, Colombo JR Jr, Haber GP, Chung BI, et al. Preliminary experience with the NirisTM optical coherence tomography system during laparoscopic and robotic prostatectomy. J Endourol. 2007;21:814–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Dangle PP, Shah KK, Kaffenberger B, Patel VR. The use of high resolution optical coherence tomography to evaluate robotic radical prostatectomy specimens. Int Braz J Urol. 2009;35:344–53.CrossRefPubMedGoogle Scholar
  81. 81.
    Muller BG, de Bruin DM, Brandt MJ, van den Bos W, van Huystee S, Faber DJ, et al. Prostate cancer diagnosis by optical coherence tomography: First results from a needle based optical platform for tissue sampling. J Biophotonics. 2016;9(5):490–8.CrossRefPubMedGoogle Scholar
  82. 82.
    Mourant JR, Bigio IJ, Boyer J, Conn RL, Johnson T, Shimada T. Spectroscopic diagnosis of bladder cancer with elastic light scattering. Lasers Surg Med. 1995;17:350–7.CrossRefPubMedGoogle Scholar
  83. 83.
    Crow P, Molckovsky A, Stone J, Uff J, Wilson B, WongKeeSong LM. Assessment of fibreoptic near-infrared raman spectroscopy for diagnosis of bladder and prostate cancer. Urology. 2005;65:1126–30.CrossRefPubMedGoogle Scholar
  84. 84.
    Baykara M, Denkçeken T, Bassorgun I, Akin Y, Yucel S, Canpolat M. Detecting positive surgical margins using single optical fiber probe during radical prostatectomy: a pilot study. Urology. 2014;83(6):1438–42.CrossRefPubMedGoogle Scholar
  85. 85.
    Tuttle JB, Steers WD. Fibreoptic imaging for urologic surgery. Curr Urol Rep. 2009;10:60–4.CrossRefPubMedGoogle Scholar
  86. 86.
    Davila HH, Mamcarz M, Nadelhaft I, Salup R, Lockhart J, Carrion RE. Visualization of the neurovascular bundles and major pelvic ganglion with fluorescent tracers after penile injection in the rat. BJU Int. 2007;101:1048–51.CrossRefPubMedGoogle Scholar
  87. 87.
    Boyette LB, Reardon MA, Mirelman AJ, Kirkley TD, Lysiak JJ, Tuttle JB, et al. Fiberoptic imaging of the cavernous nerve in vivo. J Urol. 2007;178:2694–700.CrossRefPubMedGoogle Scholar
  88. 88.
    Hruby S, Englberger C, Lusuardi L, Schatz T, Kunit T, Abdel-Aal AM, et al. Fluorescence-guided targeted pelvic lymph node dissection in intermediate and high risk prostate cancer. J Urol. 2015;194:357–63.CrossRefPubMedGoogle Scholar
  89. 89.
    Yuen K, Miura T, Sakai I, Kiyosue A, Yamashita M. Intraoperative fluorescence imaging for detection of sentinel lymph nodes and lymphatic vessels during open prostatectomy using indocyanine green. J Urol. 2015;194:371–7.CrossRefPubMedGoogle Scholar
  90. 90.
    Sonn GA, Behesnilian AS, Jiang ZK, Zettlitz KA, Lepin EJ, Bentolila LA, et al. Fluorescent image-guided surgery with an anti-prostate stem cell antigen (PSCA) diabody enables targeted resection of mouse prostate cancer xenografts in real time. Clin Cancer Res. 2016;22(6):1403–12.CrossRefPubMedGoogle Scholar
  91. 91.
    Dunn KW, Young PA. Principles of multiphoton microscopy. Nephron Exp Nephrol. 2006;103:e33–40.CrossRefPubMedGoogle Scholar
  92. 92.
    Denk W, Strickler J, Webb W. Two-photon laser scanning microscope. Science. 1990;248:73–6.CrossRefPubMedGoogle Scholar
  93. 93.
    Benninger RK, Hao M, Piston DW. Multi-photon imaging of dynamic processes in living cells and tissues. Rev Physiol Biochem Pharmacol. 2008;160:71–92.PubMedGoogle Scholar
  94. 94.
    Yadav R, Mukherjee S, Hermen M, Tan G, Maxfield FR, Webb WW, et al. Multiphoton microscopy of prostate and periprostatic neural tissue: a promising imaging technique for improving nerve-sparing prostatectomy. J Endourol. 2009;23:861–7.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Cheng JX, Xie XS. Coherent anti-stokes Raman scattering microscopy: instrumentation, theory, applications. J Phys Chem. 2004;108:827–40.CrossRefGoogle Scholar
  96. 96.
    Huff TB, Cheng J-X. In vivo coherent anti-stokes raman scattering imaging of sciatic nerve tissue. J Microsc. 2007;225:175–82.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Bessede T, Sooriakumaran P, Takenaka A. Neural supply of the male urethral sphincter: comprehensive anatomical review and implications for continence recovery after radical prostatectomy. World J Urol. 2016;35(4):549–65. Epub ahead of printCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Daniel Sagalovich
    • 1
  • Thomas Bessede
    • 2
  • Ashutosh K. Tewari
    • 3
    Email author
  1. 1.Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Department of UrologyHopitaux Universtaires Paris Sud, APHPLe Kremlin BicetreFrance
  3. 3.Department of UrologyMount Sinai HospitalNew YorkUSA

Personalised recommendations