Advertisement

Training in Robotic Urologic Surgery

  • Michael D. Weintraub
  • Steven V. Kheyfets
  • Chandru P. SundaramEmail author
Chapter

Abstract

Multiple modalities exist for training urologic surgeons in robotic surgery. These include dry and wet lab exercises, virtual reality and augmented reality simulators and animal and cadaver models. The learning curve associated with various robotic surgical procedures is variable, and training curricula aim to help novice surgeons most effectively overcome the steep part of the curve. While a standardized training protocol or credentialing process does not currently exist, multiple innovative training curricula have been developed with the intent of creating a comprehensive and effective learning environment in which to master the skills necessary for performing robotic procedures, and are explored in this chapter.

Keywords

Robotic Training Simulators Virtual reality Augmented reality Curricula 

References

  1. 1.
    Pasticier G, Rietbergen JB, Guillonneau B, Fromont G, Menon M, Vallancien G. Robotically assisted laparoscopic radical prostatectomy: feasibility study in men. Eur Urol. 2001;40(1):70–4.CrossRefPubMedGoogle Scholar
  2. 2.
    Abboudi H, Khan MS, Guru KA, Froghi S, de Win G, Van Poppel H, et al. Learning curves for urological procedures: a systematic review. BJU Int. 2014;114(4):617–29.CrossRefPubMedGoogle Scholar
  3. 3.
    Herrell SD, Smith JA Jr. Robotic-assisted laparoscopic prostatectomy: what is the learning curve? Urology. 2005;66(5 Suppl):105–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Sooriakumaran P, John M, Wiklund P, Lee D, Nilsson A, Tewari AK. Learning curve for robotic assisted laparoscopic prostatectomy: a multi-institutional study of 3794 patients. Minerva Urol Nefrol. 2011;63(3):191–8.PubMedGoogle Scholar
  5. 5.
    Hayn MH, Hussain A, Mansour AM, Andrews PE, Carpentier P, Castle E, et al. The learning curve of robot-assisted radical cystectomy: results from the International Robotic Cystectomy Consortium. Eur Urol. 2010;58(2):197–202.CrossRefPubMedGoogle Scholar
  6. 6.
    Abboudi H, Khan MS, Aboumarzouk O, Guru KA, Challacombe B, Dasgupta P, et al. Current status of validation for robotic surgery simulators—a systematic review. BJU Int. 2013;111(2):194–205.CrossRefPubMedGoogle Scholar
  7. 7.
    Wong JA, Matsumoto ED. Primer: cognitive motor learning for teaching surgical skill—how are surgical skills taught and assessed? Nat Clin Pract Urol. 2008;5(1):47–54.CrossRefPubMedGoogle Scholar
  8. 8.
    Goh AC, Aghazadeh MA, Mercado MA, Hung AJ, Pan MM, Desai MM, et al. Multi-institutional validation of fundamental inanimate robotic skills tasks. J Urol. 2015;194(6):1751–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Lucas SM, Gilley DA, Joshi SS, Gardner TA, Sundaram CP. Robotics training program: evaluation of the satisfaction and the factors that influence success of skills training in a resident robotics curriculum. J Endourol. 2011;25(10):1669–74.CrossRefPubMedGoogle Scholar
  10. 10.
    Jarc AM, Curet M. Construct validity of nine new inanimate exercises for robotic surgeon training using a standardized setup. Surg Endosc. 2014;28(2):648–56.CrossRefPubMedGoogle Scholar
  11. 11.
    Jarc AM, Curet M. Face, content, and construct validity of four, inanimate training exercises using the da Vinci (R) Si surgical system configured with Single-Site instrumentation. Surg Endosc. 2015;29(8):2298–304.CrossRefPubMedGoogle Scholar
  12. 12.
    Kenney PA, Wszolek MF, Gould JJ, Libertino JA, Moinzadeh A. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology. 2009;73(6):1288–92.CrossRefPubMedGoogle Scholar
  13. 13.
    Sethi AS, Peine WJ, Mohammadi Y, Sundaram CP. Validation of a novel virtual reality robotic simulator. J Endourol. 2009;23(3):503–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Liss MA, Abdelshehid C, Quach S, Lusch A, Graversen J, Landman J, et al. Validation, correlation, and comparison of the da Vinci trainer(™) and the daVinci surgical skills simulator(™) using the Mimic(™) software for urologic robotic surgical education. J Endourol. 2012;26(12):1629–1634.Google Scholar
  15. 15.
    Seixas-Mikelus SA, Stegemann AP, Kesavadas T, Srimathveeravalli G, Sathyaseelan G, Chandrasekhar R, et al. Content validation of a novel robotic surgical simulator. BJU Int. 2011;107(7):1130–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Seixas-Mikelus SA, Kesavadas T, Srimathveeravalli G, Chandrasekhar R, Wilding GE, Guru KA. Face validation of a novel robotic surgical simulator. Urology. 2010;76(2):357–60.CrossRefPubMedGoogle Scholar
  17. 17.
    Stolzenburg JU, Schwaibold H, Bhanot SM, Rabenalt R, Do M, Truss M, et al. Modular surgical training for endoscopic extraperitoneal radical prostatectomy. BJU Int. 2005;96(7):1022–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Lovegrove C, Novara G, Mottrie A, Guru KA, Brown M, Challacombe B, et al. Structured and modular training pathway for robot-assisted radical prostatectomy (RARP): validation of the RARP assessment score and learning curve assessment. Eur Urol. 2016;69(3):526–35.CrossRefPubMedGoogle Scholar
  19. 19.
    Stegemann AP, Ahmed K, Syed JR, Rehman S, Ghani K, Autorino R, et al. Fundamental skills of robotic surgery: a multi-institutional randomized controlled trial for validation of a simulation-based curriculum. Urology. 2013;81(4):767–74.CrossRefPubMedGoogle Scholar
  20. 20.
    Smith R, Patel V, Satava R. Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development. Int J Med Robot. 2014;10(3):379–84.CrossRefPubMedGoogle Scholar
  21. 21.
    Ahmed K, Khan R, Mottrie A, Lovegrove C, Abaza R, Ahlawat R, et al. Development of a standardised training curriculum for robotic surgery: a consensus statement from an international multidisciplinary group of experts. BJU Int. 2015;116(1):93–101.CrossRefPubMedGoogle Scholar
  22. 22.
    Volpe A, Ahmed K, Dasgupta P, Ficarra V, Novara G, van der Poel H, et al. Pilot validation study of the European Association of Urology Robotic Training Curriculum. Eur Urol. 2015;68(2):292–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Arain NA, Dulan G, Hogg DC, Rege RV, Powers CE, Tesfay ST, et al. Comprehensive proficiency-based inanimate training for robotic surgery: reliability, feasibility, and educational benefit. Surg Endosc. 2012;26(10):2740–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Goh AC, Goldfarb DW, Sander JC, Miles BJ, Dunkin BJ. Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J Urol. 2012;187(1):247–52.CrossRefPubMedGoogle Scholar
  25. 25.
    Aghazadeh MA, Jayaratna IS, Hung AJ, Pan MM, Desai MM, Gill IS, et al. External validation of Global Evaluative Assessment of Robotic Skills (GEARS). Surg Endosc. 2015;29(11):3261–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Raza SJ, Field E, Jay C, Eun D, Fumo M, Hu JC, et al. Surgical competency for urethrovesical anastomosis during robot-assisted radical prostatectomy: development and validation of the robotic anastomosis competency evaluation. Urology. 2015;85(1):27–32.CrossRefPubMedGoogle Scholar
  27. 27.
    Chowriappa A, Raza SJ, Fazili A, Field E, Malito C, Samarasekera D, et al. Augmented-reality-based skills training for robot-assisted urethrovesical anastomosis: a multi-institutional randomised controlled trial. BJU Int. 2015;115(2):336–45.CrossRefPubMedGoogle Scholar
  28. 28.
    Hung AJ, Shah SH, Dalag L, Shin D, Gill IS. Development and validation of a novel robotic procedure specific simulation platform: partial nephrectomy. J Urol. 2015;194(2):520–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Zorn KC, Gautam G, Shalhav AL, Clayman RV, Ahlering TE, Albala DM, et al. Training, credentialing, proctoring and medicolegal risks of robotic urological surgery: recommendations of the society of urologic robotic surgeons. J Urol. 2009;182(3):1126–32.CrossRefPubMedGoogle Scholar
  30. 30.
    Liberman D, Trinh QD, Jeldres C, Valiquette L, Zorn KC. Training and outcome monitoring in robotic urologic surgery. Nat Rev Urol. 2012;9(1):17–22.CrossRefGoogle Scholar
  31. 31.
    Shin DH, Dalag L, Azhar RA, Santomauro M, Satkunasivam R, Metcalfe C, et al. A novel interface for the telementoring of robotic surgery. BJU Int. 2015;116(2):302–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Ghani KR, Miller DC, Linsell S, Brachulis A, Lane B, Sarle R, et al. Measuring to improve: peer and crowd-sourced assessments of technical skill with robot-assisted radical prostatectomy. Eur Urol. 2016;69(4):547–50.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Michael D. Weintraub
    • 1
  • Steven V. Kheyfets
    • 1
  • Chandru P. Sundaram
    • 1
    Email author
  1. 1.Department of UrologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations