Dealing with Data Deluge at National Funding Agencies: An Investigation of User Needs for Understanding and Managing Research Investments

  • Mihaela VorvoreanuEmail author
  • Ann McKenna
  • Zhihua Dong
  • Krishna Madhavan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9173)


This paper provides in-depth, applied and contextualized insights about the particular challenges members of federal government funding agencies face when dealing with data deluge. We present the findings of qualitative research conducted with members of a federal US funding agency. The findings point out specific needs for understanding investment portfolios broadly and tracking the evolution and impact of ideas. They show limitations of existing solutions and their negative effects on labor, time, and personal stress. Based on these findings, we make specific suggestions for the design of automated tools that can help funding agencies understand and manage their portfolios.


Understanding users User research Knowledge management Data deluge Funding agencies Research investments Portfolio mining 



This research is supported by NSF awards TUES-1123108, TUES-1122609, TUES-1123340, TUES-1122650.


  1. 1.
    Beagrie, N., Beagrie, R., Rowlands, I.: Research data preservation and access: the views of researchers. Ariadne (2009).
  2. 2.
    Boyatzis, R.E.: Transforming Qualitative Information: Thematic Analysis and Code Development. Sage Publications, Inc., New York (1998)Google Scholar
  3. 3.
    Conner, K.R., Prahalad, C.K.: A resource-based theory of the firm: knowledge versus opportunism. Organ. Sci. 7(5), 477–501 (1996)CrossRefGoogle Scholar
  4. 4.
    Cooper, A., Reimann, R., Cronin, D.: About Face 3: The Essentials of Interaction Design. Wiley, Hoboken (2007)Google Scholar
  5. 5.
    Courtney, J.F.: Decision making and knowledge management in inquiring organizations: toward a new decision-making paradigm for DSS. Decis. Support Syst. 31(1), 17–38 (2001)CrossRefGoogle Scholar
  6. 6.
    Davenport, T.H., Prusak, L.: Working Knowledge: How Organizations Manage What They Know. Harvard Business Press, Boston (2000)Google Scholar
  7. 7.
    Dretske, F.: Knowledge and the Flow of Information. MIT Press, Cambridge (1983)zbMATHGoogle Scholar
  8. 8.
    Evans, J.A., Foster, J.G.: Metaknowledge. Science 331(6018), 721–725 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Faniel, I.M., Zimmerman, A.: Beyond the data deluge: a research agenda for large-scale data sharing and reuse. Int. J. Digit. Curation 6(1), 58–69 (2011)CrossRefGoogle Scholar
  10. 10.
    Gold, A.H., Malhotra, A., Segars, A.H.: Knowledge management: an organizational capabilities perspective. J. Manage. Inf. Syst. 18(1), 185–214 (2001)Google Scholar
  11. 11.
    Hackbarth, G.: The impact of organizational memory on IT systems. In: Proceedings of the Fourth Americas Conference on Information Systems, pp. 588–590 (1998)Google Scholar
  12. 12.
    Hartson, R., Pyla, P.: The Ux Book: Process and Guidelines for Ensuring a Quality User Experience. Morgan Kaufmann, San Francisco (2012)Google Scholar
  13. 13.
    Hemsley, J., Mason, R.M.: Knowledge and knowledge management in the social media age. J. Organ. Comput. Electron. Commer. 23(1–2), 138–167 (2013)Google Scholar
  14. 14.
    Kogut, B., Zander, U.: Knowledge of the firm, combinative capabilities, and the replication of technology. Organ. Sci. 3(3), 383–397 (1992)CrossRefGoogle Scholar
  15. 15.
    Kogut, B., Zander, U.: What firms do? coordination, identity, and learning. Organ. Sci. 7(5), 502–518 (1996)CrossRefGoogle Scholar
  16. 16.
    Lee, C.C., Yang, J.: Knowledge value chain. J. Manage. Dev. 19(9), 783–794 (2000)CrossRefGoogle Scholar
  17. 17.
    Maryam, A., Leidner, D.E.: Review: knowledge management and knowledge management systems: conceptual foundations and research issues. MIS Q. 25(1), 107–136 (2001)CrossRefGoogle Scholar
  18. 18.
    Mervis, J.: Agencies rally to tackle big data. Science 336(6077), 22 (2012)CrossRefGoogle Scholar
  19. 19.
    NSF. NSF FY 2013 Budget Request to Congress (2012)Google Scholar
  20. 20.
    Pirolli, P.: Rational analyses of information foraging on the web. Cogn. Sci. 29(3), 343–373 (2005)CrossRefGoogle Scholar
  21. 21.
    Prahalad, C.K., Hamel, G.: The core competence of the corporation. In: Hahn, D., Taylor, B. (eds.) Strategische Unternehmungsplanung—Strategische Unternehmungsführung, pp. 275–292. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Rogers, E.M., Rogers, E.: Diffusion of Innovations, 5th edn. Free Press, New York (2003)Google Scholar
  23. 23.
    Schultze, U., Leidner, D.E.: Studying knowledge management in information systems research: discourses and theoretical assumptions. Manage. Inf. Syst. Q. 26(3), 213–242 (2002)CrossRefGoogle Scholar
  24. 24.
    Schultze, U.: A confessional account of an ethnography about knowledge work. MIS Q. 24(1), 3–41 (2000)CrossRefGoogle Scholar
  25. 25.
    Simon, H.A.: The structure of ill structured problems. Artif. Intell. 4(3–4), 181–201 (1973)CrossRefGoogle Scholar
  26. 26.
    Tuomi, I.: Data is more than knowledge: implications of the reversed knowledge hierarchy for knowledge management and organizational memory. In: Proceedings of the 32nd Annual Hawaii International Conference on System Sciences, HICSS-32, p. 12 (1999)Google Scholar
  27. 27.
    Vandenbosch, B., Higgins, C.: Information acquisition and mental models: an investigation into the relationship between behaviour and learning. Inf. Syst. Res. 7(2), 198–214 (1996)CrossRefGoogle Scholar
  28. 28.
    Weinberger, D.: Everything Is Miscellaneous: The Power of the New Digital Disorder. Times Books, New York (2007)Google Scholar
  29. 29.
    Yim, N.H., Kim, S.H., Kim, H.W., Kwahk, K.Y.: Knowledge based decision making on higher level strategic concerns: system dynamics approach. Expert Syst. Appl. 27(1), 143–158 (2004)CrossRefGoogle Scholar
  30. 30.
    Zack, M.H.: Managing codified knowledge. Sloan Manage. Rev. 40(4), 45–58 (1999)Google Scholar
  31. 31.
    NSF. Discovery in a Research Portfolio: Tools for Structuring, Analyzing, Visualizing and Interacting with Proposal and Award Portfolios (2010)Google Scholar
  32. 32.
    NSF. NCSES Proposed Federal R&D Funding for FY 2011 Dips to $143 Billion, with Cuts in National Defense R&D - US National Science Foundation (NSF).
  33. 33.
  34. 34.
    Liu, Q., Vorvoreanu, M., Madhavan, K.P.C., McKenna, A.F.: Designing discovery experience for big data interaction: a case of web-based knowledge mining and interactive visualization platform. In: Marcus, A. (ed.) DUXU 2013, Part IV. LNCS, vol. 8015, pp. 543–552. Springer, Heidelberg (2013)Google Scholar
  35. 35.
    Madhavan, K., Elmqvist, N., Vorvoreanu, M., Chen, X., Wong, Y., Xian, H., Dong, Z., Johri, A.: DIA2: web-based cyberinfrastructure for visual analysis of funding portfolios. IEEE Trans. Vis. Comput. Graph. 20(12), 1823–1832 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mihaela Vorvoreanu
    • 1
    Email author
  • Ann McKenna
    • 2
  • Zhihua Dong
    • 3
  • Krishna Madhavan
    • 4
  1. 1.Computer Graphics TechnologyPurdue University West LafayetteWest LafayetteUSA
  2. 2.Ira A. Fulton Schools of EngineeringArizona State UniversityTempeUSA
  3. 3.Microsoft CorporationRedmondUSA
  4. 4.Engineering EducationPurdue University West LafayetteWest LafayetteUSA

Personalised recommendations