Conferences on Intelligent Computer Mathematics

CICM 2015: Intelligent Computer Mathematics pp 325-330 | Cite as

LeoPARD — A Generic Platform for the Implementation of Higher-Order Reasoners

  • Max WisniewskiEmail author
  • Alexander Steen
  • Christoph Benzmüller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9150)


LeoPARD supports the implementation of knowledge representation and reasoning tools for higher-order logic(s). It combines a sophisticated data structure layer (polymorphically typed \(\lambda \)-calculus with nameless spine notation, explicit substitutions, and perfect term sharing) with an ambitious multi-agent blackboard architecture (supporting prover parallelism at the term, clause, and search level). Further features of LeoPARD include a parser for all TPTP dialects, a command line interpreter, and generic means for the integration of external reasoners.



We thank the reviewers for their valuable feedback. Moreover, we thank Tomer Libal and the students of the Leo-III project for their contributions to LeoPARD.


  1. 1.
    Abadi, M., Cardelli, L., Curien, P.-L., Levy, J.-J.: Explicit substitutions. In: Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 1990, pp. 31–46, ACM, New York (1990)Google Scholar
  2. 2.
    Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1951)zbMATHGoogle Scholar
  3. 3.
    Barendregt, H.P.: Introduction to generalized type systems. J. of Funct. Program. 1(2), 125–154 (1991)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Benzmüller, C.E., Kohlhase, M.: System description: LEO - a higher-order theorem prover. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, p. 139. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  5. 5.
    Benzmüller, C., Sorge, V.: OANTS - combining interactive and automated theorem proving. In: Kerber, M., Kohlhase, M. (eds.) Symbolic Computation and Automated Reasoning, pp. 81–97. A.K.Peters, Massachusetts (2001)Google Scholar
  6. 6.
    Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M.: Combined reasoning by automated cooperation. J. Appl. Log. 6(3), 318–342 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Benzmüller, C., Paulson, L., Theiss, F., Fietzke, A.: LEO-II - a cooperative automatic theorem prover for classical higher-order logic (System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  8. 8.
    Blanchette, J., Böhme, S., Paulson, L.: Extending sledgehammer with SMT solvers. J. Autom. Reason. 51(1), 109–128 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bonacina, M.P.: A taxonomy of parallel strategies for deduction. Ann. Math. Artif. Intell. 29(1–4), 223–257 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    De Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem. INDAG. MATH 34, 381–392 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cervesato, I., Pfenning, F.: A linear spine calculus. J. Log. Comput. 13(5), 639–688 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gacek, A.: The Abella interactive theorem prover (System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 154–161. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  14. 14.
    Girard, J.Y.: Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Ph.D. thesis, Paris VII (1972)Google Scholar
  15. 15.
    Kfoury, A.J., Ronchi Della Rocca, S., Tiuryn, J., Urzyczyn, P.: Della Rocca, J. Tiuryn, and P. Urzyczyn. Alpha-conversion and typability. Inf. Comput. 150(1), 1–21 (1999)CrossRefzbMATHGoogle Scholar
  16. 16.
    Reynolds, J.C.: Towards a theory of type structure. In: Robinet, B. (ed.) Symposium on Programming. LNCS, vol. 19, pp. 408–423. Springer, Heidelberg (1974)CrossRefGoogle Scholar
  17. 17.
    Liang, C., Mitchell, D.: System description: Teyjus - a compiler and abstract machine based implementation of \(\lambda \)Prolog. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 287–291. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  18. 18.
    Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  19. 19.
    Riazanov, A.: Implementing an efficient theorem prover. Ph.D. thesis, University of Manchester (2003)Google Scholar
  20. 20.
    Sekar, R., Ramakrishnan, I.V., Voronkov, A.: Term indexing. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1853–1964. Elsevier Science Publishers B.V., Amsterdam (2001) CrossRefGoogle Scholar
  21. 21.
    Steen, A.: Efficient data structures for automated theorem proving in expressive higher-order logics. Master’s thesis, Freie Universität Berlin (2014).
  22. 22.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reason. 43(4), 337–362 (2009)CrossRefzbMATHGoogle Scholar
  23. 23.
    Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Weiss, G. (ed.): Multiagent Systems. MIT Press, Cambridge (2013) Google Scholar
  25. 25.
    Wisniewski, M.: Agent-based blackboard architecture for a higher-order theorem prover. Master’s thesis, Freie Universität Berlin (2014).

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Max Wisniewski
    • 1
    Email author
  • Alexander Steen
    • 1
  • Christoph Benzmüller
    • 1
  1. 1.Department of Mathematics and Computer ScienceFreie Universität BerlinBerlinGermany

Personalised recommendations