Conferences on Intelligent Computer Mathematics

CICM 2015: Intelligent Computer Mathematics pp 288-295 | Cite as

Formalizing Physics: Automation, Presentation and Foundation Issues

  • Cezary Kaliszyk
  • Josef Urban
  • Umair Siddique
  • Sanaz Khan-Afshar
  • Cvetan Dunchev
  • Sofiène Tahar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9150)


In this paper, we report our first experiments in using learning-assisted automated reasoning for the formal analysis of physical systems. In particular, we investigate the performance of automated proofs as compared to interactive ones done in HOL for the verification of ray and electromagnetic optics. Apart from automation, we also provide brief initial exploration of more general issues in formalization of physics, such as its presentation and foundations.



Kaliszyk was supported by the Austrian Science Fund (FWF) grant P26201.


  1. 1.
    Boyer, R., et al.: The QED Manifesto. In: Bundy, Alan (ed.) CADE 1994. LNCS, vol. 814, pp. 238–251. Springer, Heidelberg (1994) Google Scholar
  2. 2.
    Alama, J., Brink, K., Mamane, L., Urban, J.: Large formal wikis: issues and solutions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM/Calculemus 2011. LNCS, vol. 6824, pp. 133–148. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Bancerek, G., Rudnicki, P.: A compendium of continuous lattices in MIZAR. J. Autom. Reasoning 29(3–4), 189–224 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Beeson, M.: Constructivity, computability, and the continuum. In: Essays on the Foundations of Mathematics and Logic, Polimetrica, Milan, vol. 2 (2005)Google Scholar
  5. 5.
    Carette, J., Farmer, W.M., Kohlhase, M.: Realms: A structure for consolidating knowledge about mathematical theories. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 252–266. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  6. 6.
    Gonthier, G.: The four colour theorem: engineering of a formal proof. In: Kapur, D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, p. 333. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  7. 7.
    Gonthier, G.: Engineering mathematics: the odd order theorem proof. In: Giacobazzi, R., Cousot, R. (eds.) The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013, Rome, Italy, 23–25 January, pp. 1–2. ACM (2013)Google Scholar
  8. 8.
    Hales, T.: Dense Sphere Packings: A Blueprint for Formal Proofs. London Mathematical Society Lecture Note Series, vol. 400. Cambridge University Press, Cambridge (2012) CrossRefzbMATHGoogle Scholar
  9. 9.
    Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. CoRR, abs/1310.2805 (2013)Google Scholar
  10. 10.
    Kaliszyk, C., Urban, J.: Stronger automation for Flyspeck by feature weighting and strategy evolution. In: Blanchette, J.C., Urban, J. (eds.) PxTP 2013. EPiC Series, vol. 14, pp. 87–95. EasyChair (2013)Google Scholar
  11. 11.
    Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reasoning 53(2), 173–213 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kaliszyk, C., Urban, J.: HOL(y)Hammer: Online ATP service for HOL Light. Math. Comput. Sci. 9(1), 5–22 (2015)CrossRefzbMATHGoogle Scholar
  13. 13.
    Khan-Afshar, S., Hasan, O., Tahar, S.: Formal analysis of electromagnetic optics. In: Proceedings of SPIE, vol. 9193, pp. 91930A–91930A-14 (2014)Google Scholar
  14. 14.
    Khan-Afshar, S., Siddique, U., Mahmoud, M.Y., Aravantinos, V., Seddiki, O., Hasan, O., Tahar, S.: Formal analysis of optical systems. Math. Comput. Sci. 8(1), 39–70 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Klein, G., Huuck, R., Schlich, B.: Operating system verification. J. Autom. Reasoning 42(2–4), 123–124 (2009)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning for sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  17. 17.
    Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)CrossRefGoogle Scholar
  18. 18.
    Mahmoud, M.Y., Aravantinos, V., Tahar, S.: Formal verification of optical quantum flip gate. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 358–373. Springer, Heidelberg (2014) Google Scholar
  19. 19.
    Siddique, U., Aravantinos, V., Tahar, S.: Formal stability analysis of optical resonators. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 368–382. Springer, Heidelberg (2013) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Cezary Kaliszyk
    • 1
  • Josef Urban
    • 2
  • Umair Siddique
    • 3
  • Sanaz Khan-Afshar
    • 3
  • Cvetan Dunchev
    • 4
  • Sofiène Tahar
    • 3
  1. 1.University of InnsbruckInnsbruckAustria
  2. 2.Radboud UniversityNijmegenThe Netherlands
  3. 3.Concordia UniversityMontrealCanada
  4. 4.University of BolognaBolognaItaly

Personalised recommendations