Advertisement

Conferences on Intelligent Computer Mathematics

CICM 2015: Intelligent Computer Mathematics pp 280-287 | Cite as

Growing the Digital Repository of Mathematical Formulae with Generic LaTex Sources

  • Howard S. CohlEmail author
  • Moritz Schubotz
  • Marjorie A. McClain
  • Bonita V. Saunders
  • Cherry Y. Zou
  • Azeem S. Mohammed
  • Alex A. Danoff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9150)

Abstract

One initial goal for the DRMF is to seed our digital compendium with fundamental orthogonal polynomial formulae. We had used the data from the NIST Digital Library of Mathematical Functions (DLMF) as initial seed for our DRMF project. The DLMF input LaTeX source already contains some semantic information encoded using a highly customized set of semantic LaTeX macros. Those macros could be converted to content MathML using LaTeXML. During that conversion the semantics were translated to an implicit DLMF content dictionary. This year, we have developed a semantic enrichment process whose goal is to infer semantic information from generic LaTeX sources. The generated context-free semantic information is used to build DRMF formula home pages for each individual formula. We demonstrate this process using selected chapters from the book “Hypergeometric Orthogonal Polynomials and their q-Analogues” (2010) by Koekoek, Lesky and Swarttouw (KLS) as well as an actively maintained addendum to this book by Koornwinder (KLSadd). The generic input KLS and KLSadd LaTeX sources describe the printed representation of the formulae, but does not contain explicit semantic information. See http://drmf.wmflabs.org.

Keywords

Orthogonal Polynomial Semantic Information Hypergeometric Orthogonal Polynomial Seeding Project Substitution Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

(The mention of specific products, trademarks, or brand names is for purposes of identification only. Such mention is not to be interpreted in any way as an endorsement or certification of such products or brands by the National Institute of Standards and Technology, nor does it imply that the products so identified are necessarily the best available for the purpose. All trademarks mentioned herein belong to their respective owners.) We are indebted to Wikimedia Labs, the XSEDE project, Springer-Verlag, the California Institute of Technology, and Wolfram Research Inc. for their contributions and continued support. We would also like to thank Roelof Koekoek, Tom Koornwinder, Roberto Costas-Santos, Eric Weisstein, Dan Lozier, Alan Sexton, Bruce Miller, Abdou Youssef, Charles Clark, Volker Markl, George Andrews, Mourad Ismail, and Dmitry Karp for their advice, invaluable assistance, and support.

References

  1. 1.
    NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov, Release 1.0.9 of 2014–08-29. Online companion to [6]
  2. 2.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cohl, H.S., McClain, M.A., Saunders, B.V., Schubotz, M., Williams, J.C.: Digital repository of mathematical formulae. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 419–422. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. 4.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms, vol. 1-2. McGraw-Hill Book Company Inc., New York-Toronto-London (1954) zbMATHGoogle Scholar
  5. 5.
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vol. 1-3. Robert E. Krieger Publishing Co., Inc., Melbourne (1981) zbMATHGoogle Scholar
  6. 6.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010). Print companion to [1] zbMATHGoogle Scholar
  7. 7.
    Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and their \(q\)-analogues. Springer Monographs in Mathematics. Springer, Berlin (2010). With a foreword by Tom H. KoornwinderCrossRefzbMATHGoogle Scholar
  8. 8.
    Kohlhase, M.: Using LaTeX as a semantic markup format. Math. Comput. Sci. 2(2), 279–304 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kohlhase, M., Sucan, I.: A search engine for mathematical formulae. In: Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 241–253. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  10. 10.
    Koornwinder, T.H.: Additions to the formula lists in “Hypergeometric orthogonal polynomials and their \(q\)-analogues” by Koekoek, Lesky and Swarttouw. arXiv:1401.0815v2 (2015)
  11. 11.
    Miller, B.R., Youssef, A.: Technical aspects of the digital library of mathematical functions. Ann. Math. Artif. Intell. 38(1–3), 121–136 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nghiem, M.-Q., Kristianto, G.Y., Topić, G., Aizawa, A.: Which one is better: presentation-based or content-based math search? In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 200–212. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  13. 13.
    Pagel, R., Schubotz, M.: Mathematical language processing project. In: England, M., Davenport, J.H., Kohlhase, A., Kohlhase, M., Libbrecht, P., Neuper, W., Quaresma, P., Sexton, A.P., Sojka, P., Urban, J., Watt, S.M. (eds.) Joint Proceedings of the MathUI, OpenMath and ThEdu Workshops and Work in Progress track at CICM co-located with Conferences on Intelligent Computer Mathematics (CICM 2014). CEUR Workshop Proceedings, Coimbra, Portugal, 7–11 July, vol. 1186 (2014). http://CEUR-WS.org
  14. 14.
    Schubotz, M., Wicke, G.: Mathoid: robust, scalable, fast and accessible math rendering for wikipedia. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 224–235. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  15. 15.
    Sexton, A.P.: Abramowitz and stegun – a resource for mathematical document analysis. In: Campbell, J.A., Jeuring, J., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 159–168. Springer, Heidelberg (2012) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the US) 2015

Authors and Affiliations

  • Howard S. Cohl
    • 1
    Email author
  • Moritz Schubotz
    • 2
  • Marjorie A. McClain
    • 1
  • Bonita V. Saunders
    • 1
  • Cherry Y. Zou
    • 3
  • Azeem S. Mohammed
    • 3
  • Alex A. Danoff
    • 4
  1. 1.Applied and Computational Mathematics DivisionNational Institute of Standards and Technology (NIST)GaithersburgUSA
  2. 2.Database Systems and Information Management GroupTechnische UniversitätBerlinGermany
  3. 3.Poolesville High SchoolPoolesvilleUSA
  4. 4.Wootton High SchoolRockvilleUSA

Personalised recommendations