Explorative Visualization of Impact Analysis for Policy Modeling by Bonding Open Government and Simulation Data

  • Dirk Burkhardt
  • Kawa Nazemi
  • Egils Ginters
  • Artis Aizstrauts
  • Jörn Kohlhammer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9172)


Problem identification and solution finding are major challenges in policy modeling. Statistical indicator-data build the foundation for most of the required analysis work. In particular finding effective and efficient policies that solve an existing political problem is critical, since the forecast validation of the effectiveness is quite difficult. Simulation technologies can help to identify optimal policies for solutions, but nowadays many of such simulators are stand-alone technologies. In this paper we introduce a new visualization approach to enable the coupling of statistical indicator data from Open Government Data sources with simulators and especially simulation result data with the goal to provide an enhanced impact analysis for political analysts and decision makers. This allows, amongst others a more intuitive and effective way of solution finding.


Information visualization Visual analysis Impact analysis Simulation Open Government Data Policy modeling Decision making 



Part of this work has been carried out within the FUPOL project, funded by the European Union under the grant agreement no. 287119 of the 7th Framework Programme. This work is majorly based on the SemaVis technology developed by Fraunhofer IGD ( SemaVis provides an adaptive and modular approach for visualizing heterogeneous data for various users.


  1. 1.
    Kiker, G.A., Bridges, T.S., Varghese, A., Seager, T.P., Linkov, I.: Application of multicriteria decision analysis in environmental decision making. Integr. Environ. Assess. Manage. 1(2), 95–108 (2005)CrossRefGoogle Scholar
  2. 2.
    Rabelo, L., Eskandari, H., Shalan, T., Helal, M.: Supporting simulation-based decision making with the use of AHP analysis. In: Proceedings of the 37th Conference on Winter Simulation (WSC 2005), pp. 2042–2051 (2005)Google Scholar
  3. 3.
    Estrada, M.A.R.: Policy modeling: definition, classification and evaluation. J. Policy Model. 33(4), 523–536 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Howlett, M., Ramesh, M., Perl, A.: Studying Public Policy: Policy Cycles and Policy Sub-systems. Oxford University Press, Oxford (2009)Google Scholar
  5. 5.
    Lasswell, H.D.: The Decision Process: Seven Categories of Functional Analysis. University of Maryland, College Park (1956)Google Scholar
  6. 6.
    Jones, C.O.: An Introduction to the Study of Public Policy, 3rd edn. Montery, Brooks/Cole (1984)Google Scholar
  7. 7.
    Macintosh, A.: Characterizing E-participation in policy-making. In: Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS 2004), vol. 5. IEEE Computer Society, Washington, DC (2004)Google Scholar
  8. 8.
    OECD: Promise and Problems of e-democracy – challenges of online citizen engagement. OECD Publication Service, Paris (2003)Google Scholar
  9. 9.
    Burkhardt, D., Nazemi, K., Sonntagbauer, P., Kohlhammer, J.: Interactive visualizations in the process of policy modeling. In: Electronic Government and Electronic Participation. Joint Proceedings of Ongoing Research of IFIP EGOV and IFIP ePart 2013. (LNI P-221), Bonn Köllen, pp. 104–115 (2013)Google Scholar
  10. 10.
    Sonntagbauer, S., Nazemi, K., Sonntagbauer, P., Burkhardt, D.: The FUPOL policy lifecycle. Handbook of Research on Advanced ICT Integration for Governance and Policy Modeling, pp. 61–86. IGI Global, Hershey (2014)CrossRefGoogle Scholar
  11. 11.
    Weimer, D., Vining, A.R.: Policy Analysis: Concepts and Practice, 5th edn. Prentice Hall, Upper Saddle River (2011)Google Scholar
  12. 12.
    Vining, A.R., Weimer, D.L.: Policy analysis. In: Foundations of Public Administration Series, p. 17. ASPA (2010)Google Scholar
  13. 13.
    Gormley, W.T.: Public policy analysis: ideas and impacts. Annu. Rev. Political Sci. 10, 297–313 (2007)CrossRefGoogle Scholar
  14. 14.
    Meltsner, A.J.: Political feasibility and policy analysis. Public Adm. Rev. 32(6), 859–867 (1972)CrossRefGoogle Scholar
  15. 15.
    von Lucke, J., Geiger, C.P.: Open government data - frei verfügbare Daten des öffentlichen Sektors. Technical Report, Zeppelin University Friedrichshafen (2010)Google Scholar
  16. 16.
    Open Knowledge Foundation: Defining the open in open data, open content and open services (2009). Accessed 04 August 2014
  17. 17.
    Bunyakiati, P., Voravittayathorn, P.: Dissemination formats and major statistic data sets of the AEC countries: A survey. In: Information Science and Service Science and Data Mining (ISSDM), pp. 313-316 (2012)Google Scholar
  18. 18.
    Statistical Data and Metadata Exchange Initiative: SDMX Guidelines for the Use of Web Services (2005). Guidelines.pdf
  19. 19.
    Zake, M., Ginters, E.: Migration among simulation paradigms and tools. In: Proceedings of European Modeling & Simulation Symposium. CAL-TEK S.r.l., Italy (2014)Google Scholar
  20. 20.
    Ginters, E., Aizstrauts, A., Eroles, M.-A.P., Buil, R.: Two stage simulation use in project verification and validation. In: Proceedings of European Modeling and Simulation Symposium. CAL-TEK S.r.l., Italy (2014)Google Scholar
  21. 21.
    Ginters, E., Aizstrauts, A., Baltruks, M., Nazemi, K., Burkhardt, D. et al.: FUPOL simulators and advanced visualization integration. In: Proceedings of European Modeling and Simulation Symposium, p. 7. CAL-TEK S.r.l., Italy (2014)Google Scholar
  22. 22.
    Few, S.: “Information Dashboard Design,” overview article about dashboards (2012).
  23. 23.
    Duval, E.: “Attention please! learning analytics for visualization and recommendation.” In: Proceedings of the 1st International Conference on Learning Analytics and Knowledge (LAK 2011), pp. 9–17. ACM, New York (2011)Google Scholar
  24. 24.
    Nazemi, K., Burkhardt, D., Breyer, M., Stab, C., Fellner, D.W.: Semantic visualization cockpit: adaptable composition of semantics-visualization techniques for knowledge-exploration. In: Proceedings of International Conference Interactive Computer Aided Learning, pp. 163–173. University Press, Kassel (2010)Google Scholar
  25. 25.
    Ginters, E., Aizstrauts, A., Chinea, R.M.A.: Sociotechnical aspects of policy simulation. In: Handbook of Research on Advanced ICT Integration for Governance and Policy Modeling. IGI Global, Hershey, pp. 111–126 (2014)Google Scholar
  26. 26.
    Burkhardt, D., Nazemi, K., Stab, C., Steiger, M. et al.: Visual statistics cockpits for information gathering in the policy-making process. In: International Symposium Advances in Visual Computing, pp. 86–97. Springer, Heidelberg (2013)Google Scholar
  27. 27.
    Burkhardt, D., Nazemi, K., Retz, W., Kohlhammer, J.: Visual explanation of government-data for policy making through open-data inclusion. In: International Conference for Internet Technology and Secured Transactions, pp. 84–90. IEEE Computer Society, Los Alamitos (2014)Google Scholar
  28. 28.
    Burkhardt, D., Nazemi, K., Kohlhammer, J.: Policy modeling methodologies. In: Handbook of Research on Advanced ICT Integration for Governance and Policy Modeling, pp. 48–60. Information Science Reference, Hershey (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dirk Burkhardt
    • 1
    • 2
  • Kawa Nazemi
    • 1
    • 2
  • Egils Ginters
    • 3
  • Artis Aizstrauts
    • 3
  • Jörn Kohlhammer
    • 1
  1. 1.Fraunhofer Institute for Computer Graphics Research (IGD)DarmstadtGermany
  2. 2.Department of Computer ScienceTU DarmstadtDarmstadtGermany
  3. 3.Sociotechnical Systems Engineering InstituteVidzeme University of Applied SciencesValmieraLatvia

Personalised recommendations