Advertisement

A Concept for Visualizing Psychophysiological Data in Human Computer Interaction: The FeaturePlotter

  • Falko Pross
  • Dilana Hazer
  • Harald C. Traue
  • Holger Hoffmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9172)

Abstract

This paper introduces a graphical concept and an implementation for visualizing psychophysiological data in human computer interaction. Psychobiological measurements result in huge datasets, which are mandatory for the development of semi-automatic or automated emotion classification and hence a reliable planning and decision-making system called companion system. The mentioned amount of data calls for the need of making dependencies and coherences in those datasets visible for the human eye in addition to algorithmic pattern recognition and feature selection. Seeing through the data by exploring it playfully helps experts understanding the data structure and provokes non-specialists’ curiosity.

Keywords

Data visualization Psychophysiology Companion systems Emotion recognition Human computer interaction 

Notes

Acknowledgements

This research was supported by grants from the Transregional Collaborative Research Center SFB/TRR 62 Companion Technology for Cognitive Technical Systems funded by the German Research Foundation (DFG).

References

  1. 1.
    Wendemuth, A., Biundo, S.: A companion technology for cognitive technical systems. In: Esposito, A., Esposito, A.M., Vinciarelli, A., Hoffmann, R., Müller, V.C. (eds.) COST 2102. LNCS, vol. 7403, pp. 89–103. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Walter, S., Scherer, S., Schels, M., Glodek, M., Hrabal, D., Schmidt, M., Böck, R., Limbrecht, K., Traue, H.C., Schwenker, F.: Multimodal emotion classification in naturalistic user behavior. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part III, HCII 2011. LNCS, vol. 6763, pp. 603–611. Springer, Heidelberg (2011)Google Scholar
  3. 3.
    Walter, S., Gruss, S., Limbrecht-Ecklundt, K., Traue, H.C., Werner, P., Al-Hamadi, A., Diniz, N., da Silva, G.M., Andrade, A.O.: Automatic pain quantification using autonomic parameters. Psychol. Neurosci. 7, 363–380 (2014)CrossRefGoogle Scholar
  4. 4.
    Cao, C., Slobounov, S.: Application of a novel measure of EEG non-stationarity as “Shannon- entropy of the peak frequency shifting” for detecting residual abnormalities in concussed individuals. Clin. Neurophysiol. 122, 1314–1321 (2011)CrossRefGoogle Scholar
  5. 5.
    Chen, W., Zhuang, J., Yu, W., Wang, Z.: Measuring complexity using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 31, 61–68 (2009)CrossRefGoogle Scholar
  6. 6.
    Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A practical guide to support vector classification. BJU Int. 101, 1396–1400 (2008)CrossRefGoogle Scholar
  7. 7.
    Kolodyazhniy, V., Kreibig, S.D., Gross, J.J., Roth, W.T., Wilhelm, F.H.: An affective computing approach to physiological emotion specificity: toward subject-independent and stimulus-independent classification of film-induced emotions. Psychophysiology 48, 908–922 (2011)CrossRefGoogle Scholar
  8. 8.
    Tufte, E.R.: The Visual Display of Quantitative Information, 2nd edn. Graphics Press, Cheshire (2001)Google Scholar
  9. 9.
    Hidalgo, C.A., Almossawi, A.: The Visualization Revolution (2014). http://www.scientificamerican.com/article/the-data-visualization-revolution. Accessed 02 February 2015
  10. 10.
    Fry, B.: Visualizing Data. O’Reilly Media, Sebastopol (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Falko Pross
    • 1
  • Dilana Hazer
    • 1
  • Harald C. Traue
    • 1
  • Holger Hoffmann
    • 1
  1. 1.Medical PsychologyUniversity of UlmUlmGermany

Personalised recommendations