International Conference on Human Interface and the Management of Information

HIMI 2015: Human Interface and the Management of Information. Information and Knowledge Design pp 3-14 | Cite as

Annotated Domain Ontologies for the Visualization of Heterogeneous Manufacturing Data

  • Rebekka Alm
  • Mario Aehnelt
  • Steffen Hadlak
  • Bodo Urban
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9172)

Abstract

Manufacturing processes such as monitoring and controlling typically confront the user with a variety of heterogeneous data sources and systems. The cognitive efforts to summarize and combine the data from these different sources affect the user’s efficiency. Our goal is to support the user in his work task by integrating the data and presenting them in a more perceivable way. Hence, we introduce an approach in which different data sources are integrated in an annotated semantic knowledge base: our domain ontology. Based on this ontology, contextually relevant data for a specific work task is selected and embedded into a meta-visualization providing an overview of the data based on the user’s mental model. Two systems finally exemplify the usage of our approach.

Notes

Acknowledgements

This research has been supported by the German Federal State of Mecklenburg-Western Pomerania and the European Social Fund under grant ESF/IV-BM-B35-0006/12.

References

  1. 1.
    Abowd, G.D., Dey, A.K.: Towards a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, p. 304. Springer, Heidelberg (1999). doi:10.1007/3-540-48157-5_29 CrossRefGoogle Scholar
  2. 2.
    Aehnelt, M., Schulz, H.-J., Urban, B.: Towards a contextualized visual analysis of heterogeneous manufacturing data. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Li, B., Porikli, F., Zordan, V., Klosowski, J., Coquillart, S., Luo, X., Chen, M., Gotz, D. (eds.) ISVC 2013, Part II. LNCS, vol. 8034, pp. 76–85. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41939-3_8 CrossRefGoogle Scholar
  3. 3.
    Cabanac, G., Chevalier, M., Chrisment, C., Julien, C.: Collective annotation: perspectives for information retrieval improvement. In: Procedings of the Large Scale Semantic Access to Content (Text, Image, Video, and Sound), pp. 529–548 (2007). dl.acm.org/citation.cfm?id=1931440
  4. 4.
    Ceglowski, M., Coburn, A., Cuadrado, J.: Semantic search of unstructured data using contextual network graphs. In: Preliminary white paper (2003)Google Scholar
  5. 5.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisition 5(2), 199–220 (1993). doi:10.1006/knac.1993.1008 CrossRefGoogle Scholar
  6. 6.
    Kim, K.Y., Manley, D.G., Yang, H.: Ontology-based assembly design and information sharing for collaborative product development. Comput. Aided Des. 38(12), 1233–1250 (2006). doi:10.1016/j.cad.2006.08.004 CrossRefGoogle Scholar
  7. 7.
    Klein, G., Ross, K.G., Moon, B.M., Klein, D.E., Hoffman, R.R., Hollnagel, E.: Macrocognition. IEEE Intell. Syst. 18(3), 81–85 (2003). doi:10.1109/MIS.2003.1200735 CrossRefGoogle Scholar
  8. 8.
    Landesberger, T., Schreck, T., Fellner, D.W., Kohlhammer, J.: Visual search and analysis in complex information spaces–Approaches and research challenges. In: Dill, J., Earnshaw, R., Kasik, D., Vince, J., Wong, P.C. (eds.) Expanding the Frontiers of Visual Analytics and Visualization. LNCS, pp. 45–67. Springer, Heidelberg (2012). doi:10.1007/978-1-4471-2804-5_4 CrossRefGoogle Scholar
  9. 9.
    Lortal, G., Lewkowicz, M., Todirascu-Courtier, A.: Annotation: textual media for cooperation. In: Proceedings of the International Workshop on Annotation for Collaboration, pp. 41–50 (2005)Google Scholar
  10. 10.
    Schulz, H.J., Nocke, T., Heitzler, M., Schumann, H.: A design space of visualization tasks. IEEE Trans. Vis. Comput. Graph. 19(12), 2366–2375 (2013). doi:10.1109/TVCG.2013.120 CrossRefGoogle Scholar
  11. 11.
    Streit, M., Schulz, H.J., Lex, A., Schmalstieg, D., Schumann, H.: Model-driven design for the visual analysis of heterogeneous data. IEEE Trans. Vis. Comput. Graph. 18(6), 998–1010 (2012). doi:10.1109/TVCG.2011.108 CrossRefGoogle Scholar
  12. 12.
    Tshagharyan, G., Schulz, H.J.: A graph-based overview visualization for data landscapes. Comput. Sci. Inf. Technol. 1(3), 225–232 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rebekka Alm
    • 1
    • 2
  • Mario Aehnelt
    • 1
  • Steffen Hadlak
    • 1
    • 2
  • Bodo Urban
    • 1
    • 2
  1. 1.Fraunhofer IGDRostockGermany
  2. 2.University of RostockRostockGermany

Personalised recommendations