Modeling Musical Structure with Parametric Grammars

  • Mathieu Giraud
  • Sławek StaworkoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9110)


Finding high-level structure in scores is one of the main challenges in music information retrieval. Searching for a formalization enabling variety through fixed musical concepts, we use parametric grammars, an extension of context-free grammars with predicates that take parameters. Parameters are here small patterns of music that will be used with different roles in the piece. We investigate their potential use in defining and discovering the structure of a musical piece, taking example on Bach inventions. A measure of conformance of a score with a given parametric grammar based on the classical notion of edit distance is investigated. Initial analysis of computational properties of the proposed formalism is carried out.


Production Rule Parse Tree Optimal Alignment Input String Editing Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chemillier, M.: Grammaires, automates et musique. In: Briot, J.-P., Pachet, F. (eds.) Informatique Musicale, pp. 195–230. Hermès, Paris (2004)Google Scholar
  2. 2.
    Conklin, D.: Distinctive patterns in the first movement of Brahms’ string quartet in C minor. J. Math. Music 4(2), 85–92 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cope, D.: Virtual Music: Computer Synthesis of Musical Style. MIT Press, Cambridge (2004)Google Scholar
  4. 4.
    Deutsch, D., Feroe, J.: The internal representation of pitch sequences in tonal music. Psychol. Rev. 88(6), 503–522 (1981)CrossRefGoogle Scholar
  5. 5.
    Hamanaka, M., Hirata, K., Tojo, S.: Implementing “a generating theory of tonal music”. J. New Music Res. 35(4), 249–277 (2006)CrossRefGoogle Scholar
  6. 6.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison Wesley, Boston (2001)zbMATHGoogle Scholar
  7. 7.
    Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2(2), 127–145 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lartillot, O.: Taxonomic categorisation of motivic patterns. Music. Sci. 13(1 suppl), 25–46 (2009)Google Scholar
  9. 9.
    Lerdahl, F., Jackendoff, R.S.: A Generative Theory of Tonal Music. MIT Press, Cambridge (1983)Google Scholar
  10. 10.
    Marsden, A.: Schenkerian analysis by computer. J. New Music Res. 39(3), 269–289 (2010)CrossRefGoogle Scholar
  11. 11.
    Meredith, D.: A geometric language for representing structure in polyphonic music. In: International Society for Music Information Retrieval Conference (ISMIR 2012) (2012)Google Scholar
  12. 12.
    Mesnage, M., Riotte, A.: Formalisme et modèles musicaux (2006)Google Scholar
  13. 13.
    Neumeyer, D.: The two versions of J.S. Bach’s A-minor invention, BWV 784. Indiana Theory Rev. 4(2), 69–99 (1981)Google Scholar
  14. 14.
    Schaefer, T.J.: The complexity of satisfiability problems. In: ACM Symposium on Theory of Computing (STOC), pp. 216–226 (1978)Google Scholar
  15. 15.
    Schenker, H.: Der freie Satz. Universal Edition, Wien (1935)Google Scholar
  16. 16.
    Shafer, J.: The two-part and three-part inventions of Bach: a mathematical analysis. Honors project, East Texas Baptist University, March 2010Google Scholar
  17. 17.
    Sidorov, K., Jones, A., Marshall, D.: Music analysis as a smallest grammar problem. In: ISMIR 2014 (2014)Google Scholar
  18. 18.
    Steedman, M.J.: A generative grammar for jazz chord sequences. Music Percept. 2(1), 52–77 (1984)CrossRefGoogle Scholar
  19. 19.
    Sundberg, J., Lindblom, B.: Generative theories in language and music descriptions. Cognition 4, 99–122 (1976)CrossRefGoogle Scholar
  20. 20.
    Winograd, T.: Linguistics and the computer analysis of tonal harmony. J. Music Theory 12, 2–49 (1948)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.AlgomusCRIStAL (UMR CNRS 9189, Université de Lille)LilleFrance
  2. 2.LINKSInria Lille and CRIStAL (UMR CNRS 9189, Université de Lille)LilleFrance
  3. 3.Diachron ProjectLFCS, University of EdinburghEdinburghScotland

Personalised recommendations