Implicit Residual Type Error Estimators

Chapter

Abstract

The error associated with a numerical solution is intimately related with the residual, that is the lack of verification of the equation by the approximated solution. The residual is computable but obtaining the exact error from the residual is as difficult as computing the exact solution. Residual type estimators provide error assessment tools based on post processing the residual. This post process is either explicit (integrating the residual) or implicit (solving local problems with the residual as source term). Some of the residual type estimates are guaranteed error bounds. The standard estimators aim at assessing the energy norm of the error. Goal-oriented assessment is carried out by considering an auxiliary problem associated with the selected quantity of interest (the adjoint or dual problem). Thus, an error representation allows estimating the error in the quantity of interest as a post-process of the energy measures of the errors in both the original problem and the adjoint one.

Keywords

Implicit error estimates Hybrid-flux equilibration Flux-free techniques Goal-oriented estimates Adjoint problem Error representation 

References

  1. 1.
    M. Ainsworth, J.T. Oden, A posteriori error estimation in finite element analysis, in Pure and Applied Mathematics (New York) (Wiley-Interscience [Wiley], Chichester, 2000)Google Scholar
  2. 2.
    M. Ainsworth, J.T. Oden, A unified approach to a posteriori error estimation using element residual methods. Numer. Math. 65(1), 23–50 (1993)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    R.E. Bank, A. Weiser, Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 170(44), 283–301 (1985)MathSciNetCrossRefGoogle Scholar
  4. 4.
    C. Carstensen, S.A. Funken, Fully reliable localized error control in the FEM. SIAM J. Sci. Comput. 4(21), 1465–1484 (1999–2000)Google Scholar
  5. 5.
    L. Chamoin, P. Ladevèze, A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems. Comput. Methods Appl. Mech. Eng. 197(9–12), 994–1014 (2008)CrossRefMATHGoogle Scholar
  6. 6.
    P. Díez, J.J. Egozcue, A. Huerta, A posteriori error estimation for standard finite element analysis. Comput. Methods Appl. Mech. Eng. 163(1–4), 141–157 (1998)CrossRefMATHGoogle Scholar
  7. 7.
    P. Díez, N. Parés, A. Huerta, Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates. Int. J. Numer. Methods Eng. 10(56), 1465–1488 (2003)CrossRefGoogle Scholar
  8. 8.
    B. Fraeijs e Veubeke, Displacement and equilibrium models in the finite element method, in Zienkiewicz and Holister, Editors, Stress Analysis (Wiley, London, 1965). Int. J. Numer. Methods Eng., Classical Reprint Series 52, 287–342 (2001)Google Scholar
  9. 9.
    P. Ladevèze, D. Leguillon, Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20(3), 485–509 (1983)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    P. Ladevèze, E.A.W. Maunder, A general method for recovering equilibrating element tractions. Comput. Methods Appl. Mech. Eng. 137(41), 111–151 (1996)CrossRefMATHGoogle Scholar
  11. 11.
    P. Ladevèze, J.-P. Pelle, P. Rougeot, Error estimation and mesh optimization for classical finite elements Engineering Computations. Int. J. Comput.-Aided Eng. Softw. 8(1), 69–80 (1991)Google Scholar
  12. 12.
    L. Machiels, Y. Maday, A.T. Patera, rite authors, A “flux-free” nodal Neumann subproblem approach to output bounds for partial differential equations. C.R. Acad. Sci. Série I. Math. 3(330), 249–254 (2000)Google Scholar
  13. 13.
    P. Morin, R.H. Nochetto, K.G. Siebert, Local problems on stars: a posteriori error estimators, convergence, and performance. Math. Comput. 243(72), 1067–1097 (2003)MathSciNetGoogle Scholar
  14. 14.
    N. Parés, J. Bonet, A. Huerta, J. Peraire, The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations. Comput. Methods Appl. Mech. Eng. 195(4–6), 406–429 (2006)CrossRefMATHGoogle Scholar
  15. 15.
    N. Parés, P. Díez, A. Huerta, Subdomain-based flux-free a posteriori error estimators. Comput. Methods Appl. Mech. Eng. 195(4–6), 297–323 (2006)CrossRefMATHGoogle Scholar
  16. 16.
    A.M. Sauer-Budge, J. Bonet, A. Huerta, J. Peraire, Computing bounds for linear functionals of exact weak solutions to Poisson’s equation. SIAM J. Numer. Anal. 42(4), 1610–1630 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Z.C. Xuan, N. Parés, J. Peraire, Computing upper and lower bounds for the \(J\)-integral in two-dimensional linear elasticity. Comput. Methods Appl. Mech. Eng. 195(4–6), 430–443 (2006)CrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Laboratori de Càlcul Numèric, Departament de Matemàtica Aplicada IIIUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations