Cantilever Design for Tunable WDM Filters Based on Silicon Microring Resonators

Chapter

Abstract

Wavelength-division multiplexing (WDM) systems are essential building blocks in modern photonic integrated circuits (PICs), and could enable high-bandwidth connectivity in novel 3D integrated chip stack architectures. These systems can be realized with optical add-drop multiplexers (OADMs) implemented using optical microring resonators. A key feature of such optical filters is the possibility of controlling their frequency response, and extensive research has been dedicated to this end. This chapter focuses on the design and numerical validation of a frequency tuning mechanism based on a microelectromechanical system (MEMS) implementation, through a cantilever that is probing the evanescent field of the optical mode of a microring resonator. The chapter starts with a brief introduction on PICs and microring-based OADMs, along with considerations on the main parameters that can be controlled, and a summary of the state-of-the-art frequency tuning techniques. A detailed opto-mechanical analysis is then performed for the cantilever design, complemented with both mechanical and optical numerical computations.

References

  1. 1.
    G.T. Reed, Device physics: the optical age of silicon. Nature 427(6975), 595–596 (2004)CrossRefGoogle Scholar
  2. 2.
    R. Soref, The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006)CrossRefGoogle Scholar
  3. 3.
    M. Lipson, Guiding, modulating, and emitting light on silicon-challenges and opportunities. J. Lightwave Technol. 23(12), 4222–4238 (2005)CrossRefGoogle Scholar
  4. 4.
    G. Keiser, Optical Communications Essentials (McGraw-Hill, New York, 2003)Google Scholar
  5. 5.
    A. Khilo, S.J. Spector, M.E. Grein, A.H. Nejadmalayeri, C.W. Holzwarth, M.Y. Sander, M.S. Dahlem, M.Y. Peng, M.W. Geis, N.A. DiLello et al., Photonic ADC: overcoming the bottleneck of electronic jitter. Opt. Express 20(4), 4454–4469 (2012)CrossRefGoogle Scholar
  6. 6.
    T. Barwicz, M.A. Popović, F. Gan, M.S. Dahlem, C.W. Holzwarth, P.T. Rakich, E.P. Ippen, F.X. Kärtner, H.I. Smith, Reconfigurable silicon photonic circuits for telecommunication applications, in Lasers and Applications in Science and Engineering (International Society for Optics and Photonics, Bellingham, 2008), p. 68 720ZGoogle Scholar
  7. 7.
    M.S. Dahlem, C.W. Holzwarth, A. Khilo, F.X. Kärtner, H.I. Smith, E.P. Ippen, Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems. Opt. Express 19(1), 306–316 (2011)CrossRefGoogle Scholar
  8. 8.
    B. Moslehi, J.W. Goodman, M. Tur, H.J. Shaw, Fiber-optic lattice signal processing. Proc. IEEE 72(7), 909–930 (1984)CrossRefGoogle Scholar
  9. 9.
    K.P. Jackson, S.A. Newton, B. Moslehi, M. Tur, C.C. Cutler, J.W. Goodman, H. Shaw, Optical fiber delay-line signal processing. IEEE Trans. Microwave Theory Tech. 33(3), 193–210 (1985)CrossRefGoogle Scholar
  10. 10.
    C.K. Madsen, J.H. Zhao, Optical Filter Design and Analysis (Wiley-Interscience, New York, 1999)CrossRefGoogle Scholar
  11. 11.
    K. Okamoto, Fundamentals of Optical Waveguides (Academic, New York, 2010)Google Scholar
  12. 12.
    M.A. Popovic, T. Barwicz, M.S. Dahlem, F. Gan, C.W. Holzwarth, P.T. Rakich, H.I. Smith, E.P. Ippen, F.X. Krtner, Tunable, fourth-order silicon microring-resonator add-drop filters, in ECOC, 2007Google Scholar
  13. 13.
    B. Little, H. Haus, J. Foresi, L. Kimerling, E. Ippen, D. Ripin, Wavelength switching and routing using absorption and resonance. IEEE Photon. Technol. Lett. 10(6), 816–818 (1998)CrossRefGoogle Scholar
  14. 14.
    K. Shore, D. Chan, Kramers-Kronig relations for nonlinear optics. Electron. Lett. 26(15), 1206–1207 (1990)CrossRefGoogle Scholar
  15. 15.
    B.E. Saleh, M.C. Teich, Fundamentals of Photonics. Wiley Series in Pure and Applied Optics (Wiley, New York, 2007)Google Scholar
  16. 16.
    R.A. Soref, B.R. Bennett, Electrooptical effects in silicon. IEEE J. Quantum Electron. 23(1), 123–129 (1987)CrossRefGoogle Scholar
  17. 17.
    Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, Micrometre-scale silicon electro-optic modulator. Nature 435(7040), 325–327 (2005)CrossRefGoogle Scholar
  18. 18.
    K. Djordjev, S.-J. Choi, S.-J. Choi, P. Dapkus, Microdisk tunable resonant filters and switches. IEEE Photon. Technol. Lett. 14(6), 828–830 (2002)CrossRefGoogle Scholar
  19. 19.
    S. Schönenberger, T. Stöferle, N. Moll, R.F. Mahrt, M.S. Dahlem, T. Wahlbrink, J. Bolten, T. Mollenhauer, H. Kurz, B. Offrein, Ultrafast all-optical modulator with femtojoule absorbed switching energy in silicon-on-insulator. Opt. Express 18(21), 22485–22496 (2010)CrossRefGoogle Scholar
  20. 20.
    K. Djordjev, S.-J. Choi, S.-J. Choi, P. Dapkus, Vertically coupled InP microdisk switching devices with electroabsorptive active regions. IEEE Photon. Technol. Lett. 14(8), 1115–1117 (2002)CrossRefGoogle Scholar
  21. 21.
    A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, P. Günter, Electro-optically tunable microring resonators in lithium niobate. Nat. Photon. 1(7), 407–410 (2007)CrossRefGoogle Scholar
  22. 22.
    J. Prost, The Physics of Liquid Crystals, vol. 83 (Oxford University Press, Oxford, 1995)Google Scholar
  23. 23.
    W. De Cort, J. Beeckman, R. James, F.A. Fernández, R. Baets, K. Neyts, Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component. Opt. Lett. 34(13), 2054–2056 (2009)CrossRefGoogle Scholar
  24. 24.
    J. Komma, C. Schwarz, G. Hofmann, D. Heinert, R. Nawrodt, Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 101(4), 041905 (2012)Google Scholar
  25. 25.
    G. Cocorullo, F. Della Corte, I. Rendina, Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm. Appl. Phys. Lett. 74(22), 3338–3340 (1999)CrossRefGoogle Scholar
  26. 26.
    F.G. Della Corte, G. Cocorullo, M. Iodice, I. Rendina, Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm. Appl. Phys. Lett. 77(11), 1614–1616 (2000)Google Scholar
  27. 27.
    F. Gan, T. Barwicz, M. Popovic, M. Dahlem, C. Holzwarth, P. Rakich, H. Smith, E. Ippen, F. Kärtner, Maximizing the thermo-optic tuning range of silicon photonic structures, in Photonics in Switching (IEEE, San Francisco, CA, 2007), pp. 67–68Google Scholar
  28. 28.
    P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A.V. Krishnamoorthy, M. Asghari, Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Opt. Express 18(10), 9852–9858 (2010)CrossRefGoogle Scholar
  29. 29.
    M.R. Watts, W.A. Zortman, D.C. Trotter, G.N. Nielson, D.L. Luck, R.W. Young, Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics, in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 2009), p. CPDB10Google Scholar
  30. 30.
    P.T. Rakich, M.A. Popovic, M.R. Watts, T. Barwicz, H.I. Smith, E.P. Ippen, Ultrawide tuning of photonic microcavities via evanescent field perturbation. Opt. Lett. 31(9), 1241–1243 (2006)CrossRefGoogle Scholar
  31. 31.
    G.N. Nielson, D. Seneviratne, F. Lopez-Royo, P.T. Rakich, Y. Avrahami, M.R. Watts, H. Haus, H.L. Tuller, G. Barbastathis, Integrated wavelength-selective optical MEMS switching using ring resonator filters. IEEE Photon. Technol. Lett. 17(6), 1190–1192 (2005)CrossRefGoogle Scholar
  32. 32.
    S. Abdulla, L. Kauppinen, M. Dijkstra, M. De Boer, E. Berenschot, H. Jansen, R. De Ridder, G. Krijnen, Tuning a racetrack ring resonator by an integrated dielectric MEMS cantilever. Opt. Express 19(17), 15864–15878 (2011)CrossRefGoogle Scholar
  33. 33.
    H. Shoman, M.S. Dahlem, Electrically-actuated cantilever for planar evanescent tuning of microring resonators in SOI platforms, in International Conference on Optical MEMS and Nanophotonics (OMN), 2014 (IEEE, Glasgow, Scotland, 2014), pp. 141–142Google Scholar
  34. 34.
    C. Errando-Herranz, F. Niklaus, G. Stemme, K.B. Gylfason, A low-power MEMS tunable photonic ring resonator for reconfigurable optical networks, in 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, Estoril, Portugal, 2015), pp. 53–56Google Scholar
  35. 35.
    H. Shoman, M.S. Dahlem, Architectures for evanescent frequency tuning of microring resonators in micro-opto-electro-mechanical SOI platforms, in SPIE OPTO, International Society for Optics and Photonics, 2015, p. 936706Google Scholar
  36. 36.
    T. Mamdouh, D. Khalil, A MEMS tunable optical ring resonator filter. Opt. Quant. Electron. 37(9), 835–853 (2005)CrossRefGoogle Scholar
  37. 37.
    M.-C.M. Lee, M.C. Wu, MEMS-actuated microdisk resonators with variable power coupling ratios. IEEE Photon. Technol. Lett. 17(5), 1034–1036 (2005)CrossRefGoogle Scholar
  38. 38.
    J. Yao, D. Leuenberger, M.-C.M. Lee, M.C. Wu, Silicon microtoroidal resonators with integrated MEMS tunable coupler. IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007)CrossRefGoogle Scholar
  39. 39.
    B. Little, S.T. Chu, Theory of loss and gain trimming of resonator-type filters. IEEE Photon. Technol. Lett. 12(6), 636–638 (2000)CrossRefGoogle Scholar
  40. 40.
    M.A. Popovic, T. Barwicz, E.P. Ippen, F.X. Kärtner, Global design rules for silicon microphotonic waveguides: sensitivity, polarization and resonance tunability, in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 2006), p. CTuCC1Google Scholar
  41. 41.
    R.K. Gupta, Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems (MEMS). Ph.D. dissertation, Massachusetts Institute of Technology, 1998Google Scholar
  42. 42.
    M.I. Younis, MEMS Linear and Nonlinear Statics and Dynamics, vol. 20 (Springer, Berlin, 2011)Google Scholar
  43. 43.
    M. Bao, H. Yang, Squeeze film air damping in MEMS. Sens. Actuators A Phys. 136(1), 3–27 (2007)CrossRefGoogle Scholar
  44. 44.
    J. Yang, T. Ono, M. Esashi, Energy dissipation in submicrometer thick single-crystal silicon cantilevers. J. Microelectromech. Syst. 11(6), 775–783 (2002)CrossRefGoogle Scholar
  45. 45.
    A.K. Pandey, R. Pratap, Effect of flexural modes on squeeze film damping in MEMS cantilever resonators. J. Micromech. Microeng. 17(12), 2475–2484 (2007)CrossRefGoogle Scholar
  46. 46.
    C. Liu, Foundations of MEMS (Pearson Education Limited, Essex, England, 2012)Google Scholar
  47. 47.
    K.E. Petersen, Silicon as a mechanical material. Proc. IEEE 70(5), 420–457 (1982)CrossRefGoogle Scholar
  48. 48.
    A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181(3), 687–702 (2010)CrossRefMATHGoogle Scholar
  49. 49.
    T.B. Gabrielson, Mechanical-thermal noise in micromachined acoustic and vibration sensors. IEEE Trans. Electron Devices 40(5), 903–909 (1993)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Masdar Institute of Science and TechnologyAbu DhabiUnited Arab Emirates
  2. 2.Department of Electrical Engineering and Computer ScienceInstitute Center for Microsystems (iMicro), Masdar Institute of Science and TechnologyAbu DhabiUnited Arab Emirates

Personalised recommendations