Power-Law Distribution of Long-Term Experimental Data in Swarm Robotics

  • Farshad Arvin
  • Abdolrahman Attar
  • Ali Emre Turgut
  • Shigang Yue
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9140)


Bio-inspired aggregation is one of the most fundamental behaviours that has been studied in swarm robotic for more than two decades. Biology revealed that the environmental characteristics are very important factors in aggregation of social insects and other animals. In this paper, we study the effects of different environmental factors such as size and texture of aggregation cues using real robots. In addition, we propose a mathematical model to predict the behaviour of the aggregation during an experiment.


Power-law distribution Swarm robotics Aggregation Modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arvin, F., Bekravi, M.: Encoderless Position Estimation and Error Correction Techniques for Miniature Mobile Robots. Turkish Journal of Electrical Engineering & Computer Sciences 21, 1631–1645 (2013)CrossRefGoogle Scholar
  2. 2.
    Arvin, F., Murray, J., Zhang, C., Yue, S.: Colias: An Autonomous Micro Robot for Swarm Robotic Applications. International Journal of Advanced Robotic Systems 11(113), 1–10 (2014)CrossRefGoogle Scholar
  3. 3.
    Arvin, F., Samsudin, K., Ramli, A.R.: Development of IR-Based Short-Range Communication Techniques for Swarm Robot Applications. Advances in Electrical and Computer Engineering 10(4), 61–68 (2010)CrossRefGoogle Scholar
  4. 4.
    Arvin, F., Samsudin, K., Ramli, A.R., Bekravi, M.: Imitation of Honeybee Aggregation with Collective Behavior of Swarm Robots. International Journal of Computational Intelligence Systems 4(4), 739–748 (2011)Google Scholar
  5. 5.
    Arvin, F., Turgut, A.E., Bazyari, F., Arikan, K.B., Bellotto, N., Yue, S.: Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method. Adaptive Behavior 22, 189–206 (2014)CrossRefGoogle Scholar
  6. 6.
    Arvin, F., Turgut, A.E., Bellotto, N., Yue, S.: Comparison of different cue-based swarm aggregation strategies. In: Tan, Y., Shi, Y., Coello, C.A.C. (eds.) ICSI 2014, Part I. LNCS, vol. 8794, pp. 1–8. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  7. 7.
    Bayindir, L., Şahin, E.: Modeling self-organized aggregation in swarm robotic systems. In: Swarm Intelligence Symposium, pp. 88–95 (2009)Google Scholar
  8. 8.
    Camazine, S., Franks, N., Sneyd, J., Bonabeau, E., Deneubourg, J.L., Theraulaz, G.: Self-organization in Biological Systems. Princeton University Press (2001)Google Scholar
  9. 9.
    Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Review 51(4), 661–703 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Correll, N., Martinoli, A.: Modeling self-organized aggregation in a swarm of miniature robots. In: IEEE International Conference on Robotics and Automation, Workshop on Collective Behaviors Inspired by Biological and Biochemical Systems (2007)Google Scholar
  11. 11.
    Hu, C., Arvin, F., Yue, S.: Development of a bio-inspired vision system for mobile micro-robots. In: 4th International Conference on Development and Learning and on Epigenetic Robotics, pp. 137–142 (2014)Google Scholar
  12. 12.
    Krajník, T., Nitsche, M., Faigl, J., Vaněk, P., Saska, M., Přeučil, L., Duckett, T., Mejail, M.: A Practical Multirobot Localization System. Journal of Intelligent & Robotic Systems 76(3–4), 539–562 (2014)CrossRefGoogle Scholar
  13. 13.
    Lerman, K., Galstyan, A., Martinoli, A., Ijspeert, A.: A macroscopic analytical model of collaboration in distributed robotic systems. Artificial Life 7(4), 375–393 (2001)CrossRefGoogle Scholar
  14. 14.
    Martinoli, A., Ijspeert, A., Mondada, F.: Understanding collective aggregation mechanisms: From probabilistic modelling to experiments with real robots. Robotics and Autonomous Systems 29(1), 51–63 (1999)CrossRefGoogle Scholar
  15. 15.
    Mermoud, G., Matthey, L., Evans, W., Martinoli, A.: Aggregation-mediated collective perception and action in a group of miniature robots. In: International Conference on Autonomous Agents and Multiagent Systems, pp. 599–606 (2010)Google Scholar
  16. 16.
    Şahin, E., Girgin, S., Bayındır, L., Turgut, A.E.: Swarm robotics. In: Swarm Intelligence, vol. 1, pp. 87–100 (2008)Google Scholar
  17. 17.
    Schmickl, T., Hamann, H., Worn, H., Crailsheim, K.: Two different approaches to a macroscopic model of a bio-inspired robotic swarm. Robotics and Autonomous Systems 57(9), 913–921 (2009)CrossRefGoogle Scholar
  18. 18.
    Schmickl, T., Thenius, R., Moeslinger, C., Radspieler, G., Kernbach, S., Szymanski, M., Crailsheim, K.: Get in touch: cooperative decision making based on robot-to-robot collisions. Autonomous Agents and Multi-Agent Systems 18(1), 133–155 (2009)CrossRefGoogle Scholar
  19. 19.
    Schmickl, T., Hamann, H.: BEECLUST: A Swarm Algorithm Derived from Honeybees. Bio-inspired Computing and Communication Networks. CRC Press (2011)Google Scholar
  20. 20.
    Soysal, O., Şahin, E.: Probabilistic aggregation strategies in swarm robotic systems. In: Swarm Intelligence Symposium, pp. 325–332 (2005)Google Scholar
  21. 21.
    Soysal, O., Şahin, E.: A macroscopic model for self-organized aggregation in swarm robotic systems. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) Swarm Robotics Ws. LNCS, vol. 4433, pp. 27–42. Springer, Heidelberg (2007) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Farshad Arvin
    • 1
  • Abdolrahman Attar
    • 1
  • Ali Emre Turgut
    • 2
  • Shigang Yue
    • 1
  1. 1.School of Computer ScienceUniversity of LincolnLincolnUK
  2. 2.Mechanical Engineering DepartmentMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations