Integrating Consumption and Reserve Strategies for Large Consumers in Electricity Markets

  • Nigel Cleland
  • Golbon Zakeri
  • Geoff Pritchard
  • Brent Young
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 682)

Abstract

In this paper we present the development of a simulation model for large consumers to optimise their consumption and reserve offers in a security constrained electricity market. We utilise the New Zealand grid, which has security constrained generation and transmission which can influence marginal nodal pricing. To illustrate this influence we use a series of small optimal power flow models as well as illustrating how these may influence a large integrated consumer (who offers interruptible load). Our simulation model has been successful at determining periods during which a large consumer may reduce their consumption (demand response) in order to reduce the energy price. We expect this approach to be extensible to other markets although we note that information surrounding the underlying market structure will heavily influence the viability

References

  1. 1.
    Alvey, T., Goodwin, D., Ma, X., Streiffert, D., Sun, D.: A security-constrained bid-clearing system for the New Zealand wholesale electricity market. IEEE Trans. Power Syst. 13(2), 340–346 (1998). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=667349
  2. 2.
    Arroyo, J., Galiana, F.: Energy and reserve pricing in security and network-constrained electricity markets. IEEE Trans. Power Syst. 20(2), 634–643 (2005). doi:10.1109/TPWRS.2005.846221CrossRefGoogle Scholar
  3. 3.
    Bautista, G., Quintana, V., Aguado, J.: An oligopolistic model of an integrated market for energy and spinning reserve. IEEE Trans. Power Syst. 21(1), 132–142 (2006). doi:10.1109/TPWRS.2005.860909CrossRefGoogle Scholar
  4. 4.
    Bautista, G., Anjos, M., Vannelli, A.: Formulation of oligopolistic competition in AC power networks: an NLP approach. IEEE Trans. Power Syst. 22(1), 105–115 (2007). doi:10.1109/TPWRS.2006.888986CrossRefGoogle Scholar
  5. 5.
    Bautista, G., Anjos, M., Vannelli, A.: Numerical study of affine supply function equilibrium in AC network-constrained markets. IEEE Trans. Power Syst. 22(3), 1174–1184 (2007). doi:10.1109/TPWRS.2007.901299CrossRefGoogle Scholar
  6. 6.
    Borenstein, S., Jaske, M., Rosenfeld, A.: Dynamic pricing, advanced metering, and demand response in electricity markets. Center for the Study of Energy Markets (2002). http://escholarship.org/uc/item/11w8d6m4.pdf
  7. 7.
    Chakrabarti, B.: Dispatch and pricing model with network. Wellington, NZ (2006). http://www.systemoperator.co.nz/sites/default/files/bulk-upload/documents/dispatch-and-pricing-model-20061011.pdf
  8. 8.
    Chakrabarti, B.: Multiple security constrained energy dispatch model. Dekalb, Illinois (2007). http://www.systemoperator.co.nz/sites/default/files/bulk-upload/documents/multiple-security-constrained-model-07.pdf
  9. 9.
    Chattopadhyay, D.: Multicommodity spatial cournot model for generator bidding analysis. IEEE Trans. Power Syst. 19(1), 267–275 (2004). doi:10.1109/TPWRS.2003.821436CrossRefGoogle Scholar
  10. 10.
    Galiana, F., Bouffard, F., Arroyo, J., Restrepo, J.: Scheduling and pricing of coupled energy and primary, secondary, and tertiary reserves. Proc. IEEE 93(11), 1970–1983 (2005). doi:10.1109/JPROC.2005.857492CrossRefGoogle Scholar
  11. 11.
    Hurlbut, D., Rogas, K., Oren, S.: Protecting the market from “hockey stick” pricing: How the public utility commission of texas is dealing with potential price gouging. Electr. J. 17(3), 26–33 (2004). doi:10.1016/j.tej.2004.03.001. http://www.sciencedirect.com/science/article/pii/S1040619004000259
  12. 12.
    Joskow, P.L.: Lessons learned from electricity market liberalization. Energy J. 29, 9–42 (2008). http://ezproxy.auckland.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=45388868&site=ehost-live&scope=site
  13. 13.
    Naidoo, R.: vSPD - vectorised scheduling pricing and dispatch model. Electricity Authority, Wellington, NZ (2015). http://www.emi.ea.govt.nz/Tools/vSPD
  14. 14.
    Neame, P.J., Philpott, A.B., Pritchard, G.: Offer stack optimization in electricity pool markets. Oper. Res. 51(3), 397–408 (2003). http://or.journal.informs.org/content/51/3/397.short
  15. 15.
    Read, E.G.: Transmission pricing in New Zealand. Util. Policy 6(3), 227–235 (1997). http://www.sciencedirect.com/science/article/pii/S0957178797000210
  16. 16.
    Ring, B.J., Read, E.G.: A dispatch based pricing model for the New Zealand electricity market. In: Einhorn, M., Siddiqi, R. (eds.) Electricity Transmission Pricing and Technology, pp. 183–206. Springer, Netherlands (1996). http://link.springer.com.ezproxy.auckland.ac.nz/chapter/10.1007/978-94-009-1804-7_8
  17. 17.
    Schweppe, F.C., Tabors, R.D., Caraminis, M.C., Bohn, R.E.: Spot Pricing of Electricity. Kluwer Academic Publishers, Norwell, MA (1988). http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=5838573
  18. 18.
    Wen, F., David, A.: Optimally co-ordinated bidding strategies in energy and ancillary service markets. IET Gener. Transm. Distrib. 149(3), 331–338 (2002). doi:10.1049/ip-gtd:20020211CrossRefGoogle Scholar
  19. 19.
    Wu, T., Rothleder, M., Alaywan, Z., Papalexopoulos, A.: Pricing energy and ancillary services in integrated market systems by an optimal power flow. IEEE Trans. Power Syst. 19(1), 339–347 (2004). doi:10.1109/TPWRS.2003.820701CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nigel Cleland
    • 1
  • Golbon Zakeri
    • 1
  • Geoff Pritchard
    • 1
  • Brent Young
    • 1
  1. 1.University of AucklandAucklandNew Zealand

Personalised recommendations