NotaQL Is Not a Query Language! It’s for Data Transformation on Wide-Column Stores

  • Johannes Schildgen
  • Stefan Deßloch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9147)


It is simple to query a relational database because all columns of the tables are known and the language SQL is easily applicable. In NoSQL, there usually is no fixed schema and no query language. In this article, we present NotaQL, a data-transformation language for wide-column stores. NotaQL is easy to use and powerful. Many MapReduce algorithms like filtering, grouping, aggregation and even breadth-first-search, PageRank and other graph and text algorithms can be expressed in two or three short lines of code.


NoSQL Transformation Language Wide-column stores 


  1. 1.
    Buneman, P., Cheney, J.: A copy-and-paste model for provenance in curated databases. Notes 123, 6512 (2005)Google Scholar
  2. 2.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst. (TOCS) 26(2), 1–14 (2008). Article 4zbMATHCrossRefGoogle Scholar
  3. 3.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: OSDI, pp. 137–150 (2004)Google Scholar
  4. 4.
    Emde, M.: GUI und testumgebung für die HBase-schematransformationssprache NotaQL. Bachelor’s thesis, Kaiserslautern University (2014)Google Scholar
  5. 5.
    George, L.: HBase: The Definitive Guide, 1st edn. O’Reilly Media, Sebastopol (2011)Google Scholar
  6. 6.
    Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed graph-parallel computation on natural graphs. In: OSDI, vol. 12, p. 2 (2012)Google Scholar
  7. 7.
    Gupta, A., Jagadish, H.V., Mumick, I.S.: Data integration using self-maintainable views. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 140–144. Springer, Heidelberg (1996) Google Scholar
  8. 8.
    Hernández, M.A., Miller, R.J., Haas, L.M.: Clio: A semi-automatic tool for schema mapping. ACM SIGMOD Rec. 30(2), 607 (2001)CrossRefGoogle Scholar
  9. 9.
    Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-marl: a DSL for easy and efficient graph analysis. ACM SIGARCH Comput. Archit. News 40(1), 349–362 (2012)CrossRefGoogle Scholar
  10. 10.
    Lakshmanan, L.V.S., Sadri, F., Subramanian, I.N.: SchemaSQL-a language for interoperability in relational multi-database systems. In: VLDB, vol. 96, pp. 239–250 (1996)Google Scholar
  11. 11.
    Lin, J., Dyer, C.: Data-intensive text processing with MapReduce. Synth. Lect. Hum. Lang. Technol. 3(1), 1–177 (2010)CrossRefGoogle Scholar
  12. 12.
    Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 135–146. ACM (2010)Google Scholar
  13. 13.
    Grinev, M.: Do You Really Need SQL to Do It All in Cassandra? (2010).
  14. 14.
    Sergey, M., Andrey, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M., Vassilakis, T.: Dremel: interactive analysis of web-scale datasets. Commun. ACM 54(6), 114–123 (2011)CrossRefGoogle Scholar
  15. 15.
    Murray, D.G., Sherry, F.M.C., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad: a timely dataflow system. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, pp. 439–455. ACM (2013)Google Scholar
  16. 16.
    Olston, C., Chiou, G., Chitnis, L., Liu, F., Han, Y., Larsson, M., Neumann, A., Rao, V.B.N., Sankarasubramanian, V., Seth, S., et al.: Nova: continuous pig/hadoop workflows. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, pp. 1081–1090. ACM (2011)Google Scholar
  17. 17.
    Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1099–1110. ACM (2008)Google Scholar
  18. 18.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical report 1999–66, Stanford InfoLab, November 1999. Previous number = SIDL-WP-1999-0120Google Scholar
  19. 19.
    Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the data: parallel analysis with sawzall. Sci. Program. 13(4), 277–298 (2005)Google Scholar
  20. 20.
    Sato, K.: An inside look at google bigquery. White paper (2012).
  21. 21.
    Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce framework. Proc. VLDB Endow. 2(2), 1626–1629 (2009)CrossRefGoogle Scholar
  22. 22.
    Wyss, C.M., Robertson, E.L.: Relational languages for metadata integration. ACM Trans. Database Syst. (TODS) 30(2), 624–660 (2005)CrossRefGoogle Scholar
  23. 23.
    Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: Graphx: a resilient distributed graph system on spark. In: First International Workshop on Graph Data Management Experiences and Systems, p. 2. ACM (2013)Google Scholar
  24. 24.
    Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, p. 2. USENIX Association (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of KaiserslauternKaiserslauternGermany

Personalised recommendations