Titania Nanotubes for Solar Cell Applications

  • Naoum Vaenas
  • Thomas Stergiopoulos
  • Polycarpos FalarasEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 220)


Nanotubular structures have been established in the literature as advanced porous materials presenting high potential for practical applications and innovative devices. Due to their lengthwise growth, self-organized titania nanotubes belong to the family of 1D materials and continue to be at the forefront of the research activity. In this chapter a thorough analysis of the electrochemical preparation of self-organized titania nanotubes, as well as their application in dye-sensitized solar cells is presented.


Titania nanotubes Electrochemical anodization Dye-sensitized solar cells Energy storage and conversion 



This research has been co-financed by the European Social Fund and Greek national funds through the Operational Program “Education and Lifelong Learning” in the framework of ARISTEIA I (AdMatDSC/1847) and THALES (NANOSOLCEL/377756). Financial support from the European Union (Marie Curie Initial Training Network DESTINY/FP7—Grant Agreement 316494) is also acknowledged.


  1. 1.
  2. 2.
    M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys.: Condens. Matter 24, 195503 (2012)Google Scholar
  3. 3.
    X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007)CrossRefGoogle Scholar
  4. 4.
    U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rev. 48, 53 (2003)CrossRefGoogle Scholar
  5. 5.
    C. Di Valentin, G. Pacchioni, A. Selloni, Reduced and n-type doped TiO2: nature of Ti3+ species. J. Phys. Chem. C 113, 20543 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Lijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991)CrossRefGoogle Scholar
  7. 7.
    W.-G. Kim, S. Nair, Membranes from nanoporous 1D and 2D materials: a review of opportunities, developments, and challenges. Chem. Eng. Sci. 104, 908 (2013)CrossRefGoogle Scholar
  8. 8.
    V. Likodimos, T. Stergiopoulos, P. Falaras, Phase composition, size, orientation, and antenna effects of self-assembled anodized titania nanotube arrays: a polarized micro-Raman investigation. J. Phys. Chem. C 112, 12687 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Banerjee, S.K. Mohapatra, P.P. Das, M. Misra, Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem. Mater. 20, 6784 (2008)CrossRefGoogle Scholar
  10. 10.
    C.A. Grimes, O.K. Varghese, G.K. Mor, M. Paulose, X. Feng, Photonic fuels and photovoltaics: application of self-assembled 1D TiO2 nanotube/wire arrays. Abstracts of Papers of the American Chemical Society, Meeting Abstract: 39-FUEL 239 (2010), p. 21Google Scholar
  11. 11.
    M. Assefpour-Dezfuly, C. Vlachos, E.H. Andrews, Oxide morphology and adhesive bonding on titanium surfaces. J. Mater. Sci. 19, 3626 (1984)CrossRefGoogle Scholar
  12. 12.
    V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Anodic oxidation of titanium and TA6 V alloy in chromic media. An electrochemical approach. Electrochim. Acta 45, 921 (1999)CrossRefGoogle Scholar
  13. 13.
    V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6 V alloy. Surf. Interface Anal. 27, 629 (1999)CrossRefGoogle Scholar
  14. 14.
    A.G. Kontos, A.I. Kontos, D.S. Tsoukleris, V. Likodimos, J. Kunze, P. Schmuki, P. Falaras, Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology. Nanotechnology 20, 045603 (2009)CrossRefGoogle Scholar
  15. 15.
    T. Stergiopoulos, A. Valota, V. Likodimos, Th Speliotis, D. Niarchos, P. Skeldon, G.E. Thompson, P. Falaras, Dye-sensitization of self-assembled titania nanotubes prepared by galvanostatic anodization of Ti sputtered on conductive glass. Nanotechnology 20, 365601 (2009)CrossRefGoogle Scholar
  16. 16.
    A.G. Kontos, A. Katsanaki, T. Maggos, V. Likodimos, A. Ghicov, D. Kim, J. Kunze, C. Vasilakos, P. Schmuki, P. Falaras, Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes. Chem. Phys. Lett. 490, 58 (2010)Google Scholar
  17. 17.
    P.P. Das, S.K. Mohapatra, M. Misra, Photoelectrolysis of water using heterostructural composite of TiO2 nanotubes and nanoparticles. J. Phys. D Appl. Phys. 41, 245103 (2008)CrossRefGoogle Scholar
  18. 18.
    L.X. Yang, S.L. Luo, Q.Y. Cai, S.Z. Yao, A review on TiO2 nanotube arrays: fabrication, properties, and sensing applications. Chin. Sci. Bull. 55, 331 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Minagar, C.C. Berndt, J. Wanga, E. Ivanova, C. Wen, A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater. 8, 2875 (2012)CrossRefGoogle Scholar
  20. 20.
    W. Guo, X. Xue, S. Wang, C. Lin, Z.L. Wang, An integrated power pack of dye-sensitized solar cell and li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 12, 2520 (2012)CrossRefGoogle Scholar
  21. 21.
    J. Bai, B. Zhou, L. Li, Y. Liu, Q. Zheng, J. Shao, X. Zhu, W. Cai, J. Liao, L. Zou, The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte. J. Mater. Sci. 43, 1880 (2008)CrossRefGoogle Scholar
  22. 22.
    R. Beranek, H. Hildebrand, P. Schmuki, Self-organized porous titanium oxide prepared in H2SO4/HF.  Electrolytes. Electrochem. Solid St. 6, B12 (2003)Google Scholar
  23. 23.
    Q. Cai, M. Paulose, O.K. Varghese, C.A. Grimes, The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20, 230 (2005)CrossRefGoogle Scholar
  24. 24.
    S.P. Albu, A. Ghicov, J.M. Macak, P. Schmuki, 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys. Stat. Sol. (RRL) 1, R65 (2007)CrossRefGoogle Scholar
  25. 25.
    M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai, C.A. Grimes, TiO2 nanotube arrays of 1000 ím length by anodization of titanium foil: phenol red diffusion. J. Phys. Chem. C 111, 14992 (2007)CrossRefGoogle Scholar
  26. 26.
    H. Mirabolghasemi, N. Liu, K. Lee, P. Schmuki, Formation of ‘single walled’ TiO2 nanotubes with significantly enhanced electronic properties for higher efficiency dye-sensitized solar cells. Chem. Commun. 49, 2067 (2013)CrossRefGoogle Scholar
  27. 27.
    Y. Ji, K-C. Lin, H. Zheng, J-j. Zhu, A.C.S. Samia, Fabrication of double-walled TiO2 nanotubes with bamboo morphology via one-step alternating voltage anodization. Electrochem. Commun. 13, 1013 (2011)Google Scholar
  28. 28.
    H.-J. Oh, I.-K. Kim, K.-W. Jang, J.-H. Lee, S. Lee, C.-S. Chi, Influence of electrolyte and anodic potentials on morphology of titania nanotubes met. Mater. Int. 18, 673 (2012)CrossRefGoogle Scholar
  29. 29.
    S.P. Albu, D. Kim, P. Schmuki, Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angew Chem. Int. Ed. 47, 1916 (2008)CrossRefGoogle Scholar
  30. 30.
    S. Kurian, H. Seo, H. Jeon, Significant enhancement in visible light absorption of TiO2 nanotube arrays by surface band gap tuning. J. Phys. Chem. C 117, 16811 (2013)CrossRefGoogle Scholar
  31. 31.
    W. Wei, G. Oltean, C.-W. Tai, K. Edström, F. Björeforsa, L. Nyholma, High energy and power density TiO2 nanotube electrodes for 3D Li-ion microbatteries. J. Mater. Chem. A 1, 8160 (2013)CrossRefGoogle Scholar
  32. 32.
    A.E. Mohamed, S. Rohani, Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy Environ. Sci. 4, 1065 (2011)CrossRefGoogle Scholar
  33. 33.
    Y-C. Nah, I. Paramasivam, P. Schmuki, Doped TiO2 and TiO2 nanotubes: synthesis and applications. Chem. Phys. Chem. 11(201), 2698 (2010)Google Scholar
  34. 34.
    S.L. Lim, Y. Liu, G. Liu, S.Y. Xu, H.Y. Pan, E.-T. Kang, C.K. Ong, Infiltrating P3HT polymer into ordered TiO2 nanotube arrays. Phys. Status Solidi. A 208, 658 (2011)CrossRefGoogle Scholar
  35. 35.
    Y. Zhuo, L. Huang, Y. Ling, H. Li, J. Wang, Preliminary investigation of solution diffusive behavior on V-doped TiO2 nanotubes array by electrochemical impedance spectroscopy. J. Nanosci. Nanotechnol. 13, 954 (2013)CrossRefGoogle Scholar
  36. 36.
    H. Habazaki, Y. Konno, Y. Aoki, P. Skeldon, G.E. Thompson, Galvanostatic growth of nanoporous anodic films on iron in ammonium fluoride-ethylene glycol electrolytes with different water contents. J. Phys. Chem. C 114, 18853 (2010)CrossRefGoogle Scholar
  37. 37.
    G.D. Sulkaa, J. Kapusta-Kołodzieja, A. Brzozkab, M. Jaskuła, Anodic growth of TiO2 nanopore arrays at various temperatures. Electrochim. Acta 104, 526 (2013)CrossRefGoogle Scholar
  38. 38.
    A. Valota, M. Curioni, D.J. Leclere, P. Skeldon, P. Falaras, G.E. Thompson, Influence of applied potential on titanium oxide nanotube growth. J. Electrochem. Soc. 157, K243 (2010)CrossRefGoogle Scholar
  39. 39.
    S. Yoriya, C.A. Grimes, Self-assembled anodic TiO2 nanotube arrays: electrolyte properties and their effect on resulting morphologies. J. Mater. Chem. 21, 102 (2011)CrossRefGoogle Scholar
  40. 40.
    X. Feng, J.M. Macak, P. Schmuki, Robust self-organization of oxide nanotubes over a wide ph range. Chem. Mater. 19, 1534 (2007)CrossRefGoogle Scholar
  41. 41.
    S. Berger, J. Kunze, P. Schmuki, A.T. Valota, D.J. LeClere, P. Skeldon, G.E. Thompson, Influence of water content on the growth of anodic TiO2 nanotubes in fluoride-containing ethylene glycol electrolytes. J. Electrochem. Soc. 157, C18 (2010)CrossRefGoogle Scholar
  42. 42.
    Y. Ku, Y.S. Chen, W.M. Hou, Y.C. Chou, Effect of NH4F concentration in electrolyte on the fabrication of TiO2 nanotube arrays prepared by anodization. Micro Nano Lett. 7, 939 (2012)Google Scholar
  43. 43.
    K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, C.A. Grimes, Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 065707 (2007)CrossRefGoogle Scholar
  44. 44.
    P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904 (2011)CrossRefGoogle Scholar
  45. 45.
    Z. Su, W. Zhou, Formation, morphology control and applications of anodic TiO2 nanotube arrays. J. Mater. Chem. 21, 8955 (2011)CrossRefGoogle Scholar
  46. 46.
    J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr. Opin. Solid St. M. 11, 3 (2007)CrossRefGoogle Scholar
  47. 47.
    J.M. Macak, H. Hildebrand, U. Marten-Jahns, P. Schmuki, Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J. Electroanal. Chem. 621, 254 (2008)CrossRefGoogle Scholar
  48. 48.
    G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mat. Sol. C. 90, 2011 (2006)CrossRefGoogle Scholar
  49. 49.
    S. Berger, S.P. Albu, F. Schmidt-Stein, H. Hildebrand, P. Schmuki, J.S. Hammond, D.F. Paul, S. Reichlmaier, The origin for tubular growth of TiO2 nanotubes: a fluoride rich layer between tube-walls. Surf. Sci. 605, L57 (2011)CrossRefGoogle Scholar
  50. 50.
    K.-L. Li, Z.-B. Xie, S. Adams, A reliable TiO2 nanotube membrane transfer method and its application in photovoltaic devices. Electrochim. Acta 62, 116 (2012)CrossRefGoogle Scholar
  51. 51.
    D. Fanga, Z. Luob, K. Huanga, D.C. Lagoudas, Effect of heat treatment on morphology, crystalline structure and photocatalysis properties of TiO2 nanotubes on Ti substrate and freestanding membrane. J. Electroanal. Chem. 637, 6 (2009)CrossRefGoogle Scholar
  52. 52.
    Y. Liao, W. Que, P. Zhong, J. Zhang, Y. He, A facile method to crystallize amorphous anodized TiO2 nanotubes at low temperature. ACS Appl. Mater. Interfaces 3, 2800 (2011)CrossRefGoogle Scholar
  53. 53.
  54. 54.
    H.J. Snaith, Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv. Funct. Mater. 20, 13 (2010)CrossRefGoogle Scholar
  55. 55.
  56. 56.
    N. Alexaki, T. Stergiopoulos, A.G. Kontos, D.S. Tsoukleris, A.P. Katsoulidis, P.J. Pomonis, D.J. LeClere, P. Skeldon, G.E. Thompson, P. Falaras, Mesoporous titania nanocrystals prepared using hexadecylamine surfactant template: crystallization progress monitoring, morphological characterization and application in dye-sensitized solar cells. Micropor. Mesopor. Mater. 124, 52 (2009)CrossRefGoogle Scholar
  57. 57.
    G.C. Vougioukalakis, A.I. Philippopoulos, T. Stergiopoulos, P. Falaras, Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells. Coordin. Chem. Rev. 255, 2602 (2011)CrossRefGoogle Scholar
  58. 58.
    T. Stergiopoulos, P. Falaras, Minimizing energy losses in dye-sensitized solar cells using coordination compounds as alternative redox mediators coupled with appropriate organic dyes. Adv. Energy Mater. 2, 616 (2012)CrossRefGoogle Scholar
  59. 59.
    A.V. Katsanaki, H.S. Karayianni, M.-C. Bernard, D.S. Tsoukleris, P. Falaras, Preparation and characterization of nanocrystalline Pt/TCG counterelectrodes for dye-sensitized solar cells. J. Sol. Energy Eng. 130, 041008 (2008)CrossRefGoogle Scholar
  60. 60.
    M. Grätzel, Photoelectrochemical cells. Nature 414, 338 (2001)CrossRefGoogle Scholar
  61. 61.
    L. Peter, ‘Sticky Electrons’ Transport and interfacial transfer of electrons in the dye-sensitized solar cell. Acc. Chem. Res. 42, 1839 (2009)CrossRefGoogle Scholar
  62. 62.
    K. Park, Q. Zhang, D. Myers, G. Cao, Charge transport properties in TiO2 network with different particle sizes for DSCs. ACS Appl. Mater. Interfaces 5, 1044 (2013)CrossRefGoogle Scholar
  63. 63.
    T. Stergiopoulos, Spectroscopic characterization of photoelectrochemical solar cells. PhD thesis, University of Patras (2006)Google Scholar
  64. 64.
    G. Boschloo, A. Hagfeldt, Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 42, 1819 ((2009))Google Scholar
  65. 65.
    A.J. Frank, N. Kopidakis, J.V.D. Lagemaat, Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coordin. Chem. Rev. 248, 1165 (2004)CrossRefGoogle Scholar
  66. 66.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110, 6595 (2010)CrossRefGoogle Scholar
  67. 67.
    M. Grätzel, Dye-sensitized solar cells. J. Photochem. Photobiol. C 4, 145 (2003)CrossRefGoogle Scholar
  68. 68.
    M. Grätzel, Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788 (2009)CrossRefGoogle Scholar
  69. 69.
    F.O. Lenzmann, J.M. Kroon, Recent advances in dye-sensitized solar cells. Adv. Optoelectron. 2007 (2007)Google Scholar
  70. 70.
    Photovoltaic Education.
  71. 71.
    M.A. Omar, Elementary Solid State Physics (Book Addison-Wesley, London, 1975)Google Scholar
  72. 72.
    H.-G. Yun, B.-S. Bae, M.G. Kang, A simple and highly efficient method for surface treatment of Ti substrates for use in dye-sensitized solar cells. Adv. Energy Mater. 1, 305 (2011)CrossRefGoogle Scholar
  73. 73.
    J.M. Kroon, N.J. Bakker, H.J.P. Smit, P. Liska, K.R. Thampi, P. Wang, S.M. Zakeeruddin, M. Gratzel, A. Hinsch, S. Hore, U. Wurfel, R. Sastrawan, J.R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, G.E. Tulloch, Nanocrystalline dye-sensitized solar cells having maximum performance. Prog. Photovolt: Res. Appl. 15, 1 (2007)Google Scholar
  74. 74.
    T.-Y. Tsai, C.-M. Chen, S.-J. Cherng, S.-Y. Suen, An efficient titanium-based photoanode for dye-sensitized solar cell under back-side illumination. Prog. Photovolt: Res. Appl. 21, 226 (2013)Google Scholar
  75. 75.
    S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Pechy, M.K. Nazeeruddin, M. Gratzel, High-efficiency (7.2 %) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2. Photoanode Chem. Commun. 14 4004 (2006)Google Scholar
  76. 76.
    J. An, W. Guo, T. Ma, Enhanced photoconversion efficiency of all-flexible dye-sensitized solar cells based on a ti substrate with TiO2 nanoforest underlayer. Small 8, 3427 (2012)CrossRefGoogle Scholar
  77. 77.
    P. Roy, S.P. Albu, P. Schmuki, TiO2 nanotubes in dye-sensitized solar cells: higher efficiencies by well-defined tube tops. Electrochem. Commun. 12, 949 (2010)CrossRefGoogle Scholar
  78. 78.
    L-L. Li, C.-Y. Tsai, H.-P. Wu, C.-C. Chen, E.W.-G. Diau, Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells. J. Mater. Chem. 20, 2753 (2010)Google Scholar
  79. 79.
    N. Mir, K. Lee, I. Paramasivam, P. Schmuki, Optimizing TiO2 nanotube top geometry for use in dye-sensitized solar cells. Chem. Europ. J. 18, 11862 (2012)CrossRefGoogle Scholar
  80. 80.
    J. Wang, Z. Lin, Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem. Mater. 22, 579 (2010)CrossRefGoogle Scholar
  81. 81.
    M. Ye, X. Xin, C. Lin, Z. Lin, High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nan. Lett. 11, 3214 (2011)Google Scholar
  82. 82.
    J.Y. Kim, J.H. Noh, K. Zhu, A.F. Halverson, N.R. Neale, S. Park, K.S. Hong, A.J. Frank, General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: illumination geometry and transport properties. ACS Nano 5, 2647 (2011)CrossRefGoogle Scholar
  83. 83.
    P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2, 45 (2010)Google Scholar
  84. 84.
    K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69 (2007)CrossRefGoogle Scholar
  85. 85.
    M. Yutao, L. Yuan, X. Xurui, L. Xueping, Z. Xiaowen, Synthesis of TiO2 nanotubes film and its light scattering property. Chin. Sci. Bull. 50, 1985 (2005)CrossRefGoogle Scholar
  86. 86.
    R. Mohammadpour, A. Irajizad, A. Hagfeldt, G. Boschloo, Comparison of trap-state distribution and carrier transport in nanotubular and nanoparticulate TiO2 electrodes for dye-sensitized solar cells. Chem. Phys. Chem. 11, 2140 (2010)Google Scholar
  87. 87.
    C. Richter, C.A. Schmuttenmaer, Exciton-like trap states limit electron mobility in TiO2 nanotubes. Nat. Nanotechnol. 5, 769 (2010)CrossRefGoogle Scholar
  88. 88.
    J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, S. Gimenez, Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. J. Phys. Chem. C 113, 17278 (2009)CrossRefGoogle Scholar
  89. 89.
    J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker, Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. J. Am. Chem. Soc. 130, 13364 (2008)CrossRefGoogle Scholar
  90. 90.
    J.P. Gonzalez-Vazquez, V. Morales-Flórez, J.A. Anta, How important is working with an ordered electrode to improve the charge collection efficiency in nanostructured solar cells? J. Phys. Chem. Lett. 3, 386 (2012)CrossRefGoogle Scholar
  91. 91.
    A. Ghicov, S.P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, C.-A. Schiller, P. Falaras, P. Schmuki, TiO2 nanotubes in dye-sensitized solar cells: critical factors for the conversion efficiency. Chem. Asian J. 4, 520 (2009)CrossRefGoogle Scholar
  92. 92.
    L. Sun, S. Zhang, X. Sun, X. He, Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells. J. Nanosci. Nanotechnol. 10, 4551 (2010)CrossRefGoogle Scholar
  93. 93.
    P. Zhong, W. Que, Y. Liao, J. Zhang, X. Hu, Improved performance in dye-sensitized solar cells by rationally tailoring anodic TiO2 nanotube length. J. Alloys Compd. 540, 159 (2012)CrossRefGoogle Scholar
  94. 94.
    C.-C. Chen, H.-W. Chung, C.-H. Chen, H.-P. Lu, C.-M. Lan, S.-F. Chen, L. Luo, C.-S. Hung, E. W.-G. Diau, Fabrication and characterization of anodic titanium oxide nanotube arrays of controlled length for highly efficient dye-sensitized solar cells. J. Phys. Chem. C 112, 19151 (2008)Google Scholar
  95. 95.
    N. Liu, K. Lee, P. Schmuki, Small diameter TiO2 nanotubes vs. nanopores in dye sensitized solar cells. Electrochem. Commun. 15, 1 (2012)CrossRefGoogle Scholar
  96. 96.
    S.P. Albu, H. Tsuchiya, S. Fujimoto, P. Schmuki, TiO2 nanotubes—annealing effects on detailed morphology and structure. Eur. J. Inorg. Chem. 2010, 4351 (2010)CrossRefGoogle Scholar
  97. 97.
    K. Zhu, N.R. Neale, A.F. Halverson, J.Y. Kim, A.J. Frank, Effects of annealing temperature on the charge-collection and light-harvesting properties of TiO2 nanotube-based dye-sensitized solar cells. J. Phys. Chem. C 114, 13433 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Naoum Vaenas
    • 1
  • Thomas Stergiopoulos
    • 1
  • Polycarpos Falaras
    • 1
    Email author
  1. 1.Institute of Nanoscience and Nanotechnology (INN)National Centre for Scientific Research DemokritosAthensGreece

Personalised recommendations