Skip to main content

Titania Nanotubes for Solar Cell Applications

  • Chapter
  • First Online:
  • 1407 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 220))

Abstract

Nanotubular structures have been established in the literature as advanced porous materials presenting high potential for practical applications and innovative devices. Due to their lengthwise growth, self-organized titania nanotubes belong to the family of 1D materials and continue to be at the forefront of the research activity. In this chapter a thorough analysis of the electrochemical preparation of self-organized titania nanotubes, as well as their application in dye-sensitized solar cells is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. USGS. www.usgs.gov

  2. M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys.: Condens. Matter 24, 195503 (2012)

    Google Scholar 

  3. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  4. U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rev. 48, 53 (2003)

    Article  Google Scholar 

  5. C. Di Valentin, G. Pacchioni, A. Selloni, Reduced and n-type doped TiO2: nature of Ti3+ species. J. Phys. Chem. C 113, 20543 (2009)

    Article  Google Scholar 

  6. S. Lijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991)

    Article  Google Scholar 

  7. W.-G. Kim, S. Nair, Membranes from nanoporous 1D and 2D materials: a review of opportunities, developments, and challenges. Chem. Eng. Sci. 104, 908 (2013)

    Article  Google Scholar 

  8. V. Likodimos, T. Stergiopoulos, P. Falaras, Phase composition, size, orientation, and antenna effects of self-assembled anodized titania nanotube arrays: a polarized micro-Raman investigation. J. Phys. Chem. C 112, 12687 (2008)

    Article  Google Scholar 

  9. S. Banerjee, S.K. Mohapatra, P.P. Das, M. Misra, Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem. Mater. 20, 6784 (2008)

    Article  Google Scholar 

  10. C.A. Grimes, O.K. Varghese, G.K. Mor, M. Paulose, X. Feng, Photonic fuels and photovoltaics: application of self-assembled 1D TiO2 nanotube/wire arrays. Abstracts of Papers of the American Chemical Society, Meeting Abstract: 39-FUEL 239 (2010), p. 21

    Google Scholar 

  11. M. Assefpour-Dezfuly, C. Vlachos, E.H. Andrews, Oxide morphology and adhesive bonding on titanium surfaces. J. Mater. Sci. 19, 3626 (1984)

    Article  Google Scholar 

  12. V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Anodic oxidation of titanium and TA6 V alloy in chromic media. An electrochemical approach. Electrochim. Acta 45, 921 (1999)

    Article  Google Scholar 

  13. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6 V alloy. Surf. Interface Anal. 27, 629 (1999)

    Article  Google Scholar 

  14. A.G. Kontos, A.I. Kontos, D.S. Tsoukleris, V. Likodimos, J. Kunze, P. Schmuki, P. Falaras, Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology. Nanotechnology 20, 045603 (2009)

    Article  Google Scholar 

  15. T. Stergiopoulos, A. Valota, V. Likodimos, Th Speliotis, D. Niarchos, P. Skeldon, G.E. Thompson, P. Falaras, Dye-sensitization of self-assembled titania nanotubes prepared by galvanostatic anodization of Ti sputtered on conductive glass. Nanotechnology 20, 365601 (2009)

    Article  Google Scholar 

  16. A.G. Kontos, A. Katsanaki, T. Maggos, V. Likodimos, A. Ghicov, D. Kim, J. Kunze, C. Vasilakos, P. Schmuki, P. Falaras, Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes. Chem. Phys. Lett. 490, 58 (2010)

    Google Scholar 

  17. P.P. Das, S.K. Mohapatra, M. Misra, Photoelectrolysis of water using heterostructural composite of TiO2 nanotubes and nanoparticles. J. Phys. D Appl. Phys. 41, 245103 (2008)

    Article  Google Scholar 

  18. L.X. Yang, S.L. Luo, Q.Y. Cai, S.Z. Yao, A review on TiO2 nanotube arrays: fabrication, properties, and sensing applications. Chin. Sci. Bull. 55, 331 (2010)

    Article  Google Scholar 

  19. S. Minagar, C.C. Berndt, J. Wanga, E. Ivanova, C. Wen, A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater. 8, 2875 (2012)

    Article  Google Scholar 

  20. W. Guo, X. Xue, S. Wang, C. Lin, Z.L. Wang, An integrated power pack of dye-sensitized solar cell and li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 12, 2520 (2012)

    Article  Google Scholar 

  21. J. Bai, B. Zhou, L. Li, Y. Liu, Q. Zheng, J. Shao, X. Zhu, W. Cai, J. Liao, L. Zou, The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte. J. Mater. Sci. 43, 1880 (2008)

    Article  Google Scholar 

  22. R. Beranek, H. Hildebrand, P. Schmuki, Self-organized porous titanium oxide prepared in H2SO4/HF.  Electrolytes. Electrochem. Solid St. 6, B12 (2003)

    Google Scholar 

  23. Q. Cai, M. Paulose, O.K. Varghese, C.A. Grimes, The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J. Mater. Res. 20, 230 (2005)

    Article  Google Scholar 

  24. S.P. Albu, A. Ghicov, J.M. Macak, P. Schmuki, 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys. Stat. Sol. (RRL) 1, R65 (2007)

    Article  Google Scholar 

  25. M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai, C.A. Grimes, TiO2 nanotube arrays of 1000 ím length by anodization of titanium foil: phenol red diffusion. J. Phys. Chem. C 111, 14992 (2007)

    Article  Google Scholar 

  26. H. Mirabolghasemi, N. Liu, K. Lee, P. Schmuki, Formation of ‘single walled’ TiO2 nanotubes with significantly enhanced electronic properties for higher efficiency dye-sensitized solar cells. Chem. Commun. 49, 2067 (2013)

    Article  Google Scholar 

  27. Y. Ji, K-C. Lin, H. Zheng, J-j. Zhu, A.C.S. Samia, Fabrication of double-walled TiO2 nanotubes with bamboo morphology via one-step alternating voltage anodization. Electrochem. Commun. 13, 1013 (2011)

    Google Scholar 

  28. H.-J. Oh, I.-K. Kim, K.-W. Jang, J.-H. Lee, S. Lee, C.-S. Chi, Influence of electrolyte and anodic potentials on morphology of titania nanotubes met. Mater. Int. 18, 673 (2012)

    Article  Google Scholar 

  29. S.P. Albu, D. Kim, P. Schmuki, Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angew Chem. Int. Ed. 47, 1916 (2008)

    Article  Google Scholar 

  30. S. Kurian, H. Seo, H. Jeon, Significant enhancement in visible light absorption of TiO2 nanotube arrays by surface band gap tuning. J. Phys. Chem. C 117, 16811 (2013)

    Article  Google Scholar 

  31. W. Wei, G. Oltean, C.-W. Tai, K. Edström, F. Björeforsa, L. Nyholma, High energy and power density TiO2 nanotube electrodes for 3D Li-ion microbatteries. J. Mater. Chem. A 1, 8160 (2013)

    Article  Google Scholar 

  32. A.E. Mohamed, S. Rohani, Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy Environ. Sci. 4, 1065 (2011)

    Article  Google Scholar 

  33. Y-C. Nah, I. Paramasivam, P. Schmuki, Doped TiO2 and TiO2 nanotubes: synthesis and applications. Chem. Phys. Chem. 11(201), 2698 (2010)

    Google Scholar 

  34. S.L. Lim, Y. Liu, G. Liu, S.Y. Xu, H.Y. Pan, E.-T. Kang, C.K. Ong, Infiltrating P3HT polymer into ordered TiO2 nanotube arrays. Phys. Status Solidi. A 208, 658 (2011)

    Article  Google Scholar 

  35. Y. Zhuo, L. Huang, Y. Ling, H. Li, J. Wang, Preliminary investigation of solution diffusive behavior on V-doped TiO2 nanotubes array by electrochemical impedance spectroscopy. J. Nanosci. Nanotechnol. 13, 954 (2013)

    Article  Google Scholar 

  36. H. Habazaki, Y. Konno, Y. Aoki, P. Skeldon, G.E. Thompson, Galvanostatic growth of nanoporous anodic films on iron in ammonium fluoride-ethylene glycol electrolytes with different water contents. J. Phys. Chem. C 114, 18853 (2010)

    Article  Google Scholar 

  37. G.D. Sulkaa, J. Kapusta-Kołodzieja, A. Brzozkab, M. Jaskuła, Anodic growth of TiO2 nanopore arrays at various temperatures. Electrochim. Acta 104, 526 (2013)

    Article  Google Scholar 

  38. A. Valota, M. Curioni, D.J. Leclere, P. Skeldon, P. Falaras, G.E. Thompson, Influence of applied potential on titanium oxide nanotube growth. J. Electrochem. Soc. 157, K243 (2010)

    Article  Google Scholar 

  39. S. Yoriya, C.A. Grimes, Self-assembled anodic TiO2 nanotube arrays: electrolyte properties and their effect on resulting morphologies. J. Mater. Chem. 21, 102 (2011)

    Article  Google Scholar 

  40. X. Feng, J.M. Macak, P. Schmuki, Robust self-organization of oxide nanotubes over a wide ph range. Chem. Mater. 19, 1534 (2007)

    Article  Google Scholar 

  41. S. Berger, J. Kunze, P. Schmuki, A.T. Valota, D.J. LeClere, P. Skeldon, G.E. Thompson, Influence of water content on the growth of anodic TiO2 nanotubes in fluoride-containing ethylene glycol electrolytes. J. Electrochem. Soc. 157, C18 (2010)

    Article  Google Scholar 

  42. Y. Ku, Y.S. Chen, W.M. Hou, Y.C. Chou, Effect of NH4F concentration in electrolyte on the fabrication of TiO2 nanotube arrays prepared by anodization. Micro Nano Lett. 7, 939 (2012)

    Google Scholar 

  43. K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, C.A. Grimes, Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 065707 (2007)

    Article  Google Scholar 

  44. P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50, 2904 (2011)

    Article  Google Scholar 

  45. Z. Su, W. Zhou, Formation, morphology control and applications of anodic TiO2 nanotube arrays. J. Mater. Chem. 21, 8955 (2011)

    Article  Google Scholar 

  46. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr. Opin. Solid St. M. 11, 3 (2007)

    Article  Google Scholar 

  47. J.M. Macak, H. Hildebrand, U. Marten-Jahns, P. Schmuki, Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J. Electroanal. Chem. 621, 254 (2008)

    Article  Google Scholar 

  48. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mat. Sol. C. 90, 2011 (2006)

    Article  Google Scholar 

  49. S. Berger, S.P. Albu, F. Schmidt-Stein, H. Hildebrand, P. Schmuki, J.S. Hammond, D.F. Paul, S. Reichlmaier, The origin for tubular growth of TiO2 nanotubes: a fluoride rich layer between tube-walls. Surf. Sci. 605, L57 (2011)

    Article  Google Scholar 

  50. K.-L. Li, Z.-B. Xie, S. Adams, A reliable TiO2 nanotube membrane transfer method and its application in photovoltaic devices. Electrochim. Acta 62, 116 (2012)

    Article  Google Scholar 

  51. D. Fanga, Z. Luob, K. Huanga, D.C. Lagoudas, Effect of heat treatment on morphology, crystalline structure and photocatalysis properties of TiO2 nanotubes on Ti substrate and freestanding membrane. J. Electroanal. Chem. 637, 6 (2009)

    Article  Google Scholar 

  52. Y. Liao, W. Que, P. Zhong, J. Zhang, Y. He, A facile method to crystallize amorphous anodized TiO2 nanotubes at low temperature. ACS Appl. Mater. Interfaces 3, 2800 (2011)

    Article  Google Scholar 

  53. Dyesol. www.dyesol.com

  54. H.J. Snaith, Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv. Funct. Mater. 20, 13 (2010)

    Article  Google Scholar 

  55. EIA. www.eia.gov

  56. N. Alexaki, T. Stergiopoulos, A.G. Kontos, D.S. Tsoukleris, A.P. Katsoulidis, P.J. Pomonis, D.J. LeClere, P. Skeldon, G.E. Thompson, P. Falaras, Mesoporous titania nanocrystals prepared using hexadecylamine surfactant template: crystallization progress monitoring, morphological characterization and application in dye-sensitized solar cells. Micropor. Mesopor. Mater. 124, 52 (2009)

    Article  Google Scholar 

  57. G.C. Vougioukalakis, A.I. Philippopoulos, T. Stergiopoulos, P. Falaras, Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells. Coordin. Chem. Rev. 255, 2602 (2011)

    Article  Google Scholar 

  58. T. Stergiopoulos, P. Falaras, Minimizing energy losses in dye-sensitized solar cells using coordination compounds as alternative redox mediators coupled with appropriate organic dyes. Adv. Energy Mater. 2, 616 (2012)

    Article  Google Scholar 

  59. A.V. Katsanaki, H.S. Karayianni, M.-C. Bernard, D.S. Tsoukleris, P. Falaras, Preparation and characterization of nanocrystalline Pt/TCG counterelectrodes for dye-sensitized solar cells. J. Sol. Energy Eng. 130, 041008 (2008)

    Article  Google Scholar 

  60. M. Grätzel, Photoelectrochemical cells. Nature 414, 338 (2001)

    Article  Google Scholar 

  61. L. Peter, ‘Sticky Electrons’ Transport and interfacial transfer of electrons in the dye-sensitized solar cell. Acc. Chem. Res. 42, 1839 (2009)

    Article  Google Scholar 

  62. K. Park, Q. Zhang, D. Myers, G. Cao, Charge transport properties in TiO2 network with different particle sizes for DSCs. ACS Appl. Mater. Interfaces 5, 1044 (2013)

    Article  Google Scholar 

  63. T. Stergiopoulos, Spectroscopic characterization of photoelectrochemical solar cells. PhD thesis, University of Patras (2006)

    Google Scholar 

  64. G. Boschloo, A. Hagfeldt, Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Res. 42, 1819 ((2009))

    Google Scholar 

  65. A.J. Frank, N. Kopidakis, J.V.D. Lagemaat, Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coordin. Chem. Rev. 248, 1165 (2004)

    Article  Google Scholar 

  66. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110, 6595 (2010)

    Article  Google Scholar 

  67. M. Grätzel, Dye-sensitized solar cells. J. Photochem. Photobiol. C 4, 145 (2003)

    Article  Google Scholar 

  68. M. Grätzel, Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788 (2009)

    Article  Google Scholar 

  69. F.O. Lenzmann, J.M. Kroon, Recent advances in dye-sensitized solar cells. Adv. Optoelectron. 2007 (2007)

    Google Scholar 

  70. Photovoltaic Education. www.pveducation.org

  71. M.A. Omar, Elementary Solid State Physics (Book Addison-Wesley, London, 1975)

    Google Scholar 

  72. H.-G. Yun, B.-S. Bae, M.G. Kang, A simple and highly efficient method for surface treatment of Ti substrates for use in dye-sensitized solar cells. Adv. Energy Mater. 1, 305 (2011)

    Article  Google Scholar 

  73. J.M. Kroon, N.J. Bakker, H.J.P. Smit, P. Liska, K.R. Thampi, P. Wang, S.M. Zakeeruddin, M. Gratzel, A. Hinsch, S. Hore, U. Wurfel, R. Sastrawan, J.R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien, G.E. Tulloch, Nanocrystalline dye-sensitized solar cells having maximum performance. Prog. Photovolt: Res. Appl. 15, 1 (2007)

    Google Scholar 

  74. T.-Y. Tsai, C.-M. Chen, S.-J. Cherng, S.-Y. Suen, An efficient titanium-based photoanode for dye-sensitized solar cell under back-side illumination. Prog. Photovolt: Res. Appl. 21, 226 (2013)

    Google Scholar 

  75. S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Pechy, M.K. Nazeeruddin, M. Gratzel, High-efficiency (7.2 %) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2. Photoanode Chem. Commun. 14 4004 (2006)

    Google Scholar 

  76. J. An, W. Guo, T. Ma, Enhanced photoconversion efficiency of all-flexible dye-sensitized solar cells based on a ti substrate with TiO2 nanoforest underlayer. Small 8, 3427 (2012)

    Article  Google Scholar 

  77. P. Roy, S.P. Albu, P. Schmuki, TiO2 nanotubes in dye-sensitized solar cells: higher efficiencies by well-defined tube tops. Electrochem. Commun. 12, 949 (2010)

    Article  Google Scholar 

  78. L-L. Li, C.-Y. Tsai, H.-P. Wu, C.-C. Chen, E.W.-G. Diau, Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells. J. Mater. Chem. 20, 2753 (2010)

    Google Scholar 

  79. N. Mir, K. Lee, I. Paramasivam, P. Schmuki, Optimizing TiO2 nanotube top geometry for use in dye-sensitized solar cells. Chem. Europ. J. 18, 11862 (2012)

    Article  Google Scholar 

  80. J. Wang, Z. Lin, Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem. Mater. 22, 579 (2010)

    Article  Google Scholar 

  81. M. Ye, X. Xin, C. Lin, Z. Lin, High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nan. Lett. 11, 3214 (2011)

    Google Scholar 

  82. J.Y. Kim, J.H. Noh, K. Zhu, A.F. Halverson, N.R. Neale, S. Park, K.S. Hong, A.J. Frank, General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: illumination geometry and transport properties. ACS Nano 5, 2647 (2011)

    Article  Google Scholar 

  83. P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2, 45 (2010)

    Google Scholar 

  84. K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69 (2007)

    Article  Google Scholar 

  85. M. Yutao, L. Yuan, X. Xurui, L. Xueping, Z. Xiaowen, Synthesis of TiO2 nanotubes film and its light scattering property. Chin. Sci. Bull. 50, 1985 (2005)

    Article  Google Scholar 

  86. R. Mohammadpour, A. Irajizad, A. Hagfeldt, G. Boschloo, Comparison of trap-state distribution and carrier transport in nanotubular and nanoparticulate TiO2 electrodes for dye-sensitized solar cells. Chem. Phys. Chem. 11, 2140 (2010)

    Google Scholar 

  87. C. Richter, C.A. Schmuttenmaer, Exciton-like trap states limit electron mobility in TiO2 nanotubes. Nat. Nanotechnol. 5, 769 (2010)

    Article  Google Scholar 

  88. J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, S. Gimenez, Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. J. Phys. Chem. C 113, 17278 (2009)

    Article  Google Scholar 

  89. J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker, Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. J. Am. Chem. Soc. 130, 13364 (2008)

    Article  Google Scholar 

  90. J.P. Gonzalez-Vazquez, V. Morales-Flórez, J.A. Anta, How important is working with an ordered electrode to improve the charge collection efficiency in nanostructured solar cells? J. Phys. Chem. Lett. 3, 386 (2012)

    Article  Google Scholar 

  91. A. Ghicov, S.P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, C.-A. Schiller, P. Falaras, P. Schmuki, TiO2 nanotubes in dye-sensitized solar cells: critical factors for the conversion efficiency. Chem. Asian J. 4, 520 (2009)

    Article  Google Scholar 

  92. L. Sun, S. Zhang, X. Sun, X. He, Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells. J. Nanosci. Nanotechnol. 10, 4551 (2010)

    Article  Google Scholar 

  93. P. Zhong, W. Que, Y. Liao, J. Zhang, X. Hu, Improved performance in dye-sensitized solar cells by rationally tailoring anodic TiO2 nanotube length. J. Alloys Compd. 540, 159 (2012)

    Article  Google Scholar 

  94. C.-C. Chen, H.-W. Chung, C.-H. Chen, H.-P. Lu, C.-M. Lan, S.-F. Chen, L. Luo, C.-S. Hung, E. W.-G. Diau, Fabrication and characterization of anodic titanium oxide nanotube arrays of controlled length for highly efficient dye-sensitized solar cells. J. Phys. Chem. C 112, 19151 (2008)

    Google Scholar 

  95. N. Liu, K. Lee, P. Schmuki, Small diameter TiO2 nanotubes vs. nanopores in dye sensitized solar cells. Electrochem. Commun. 15, 1 (2012)

    Article  Google Scholar 

  96. S.P. Albu, H. Tsuchiya, S. Fujimoto, P. Schmuki, TiO2 nanotubes—annealing effects on detailed morphology and structure. Eur. J. Inorg. Chem. 2010, 4351 (2010)

    Article  Google Scholar 

  97. K. Zhu, N.R. Neale, A.F. Halverson, J.Y. Kim, A.J. Frank, Effects of annealing temperature on the charge-collection and light-harvesting properties of TiO2 nanotube-based dye-sensitized solar cells. J. Phys. Chem. C 114, 13433 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Social Fund and Greek national funds through the Operational Program “Education and Lifelong Learning” in the framework of ARISTEIA I (AdMatDSC/1847) and THALES (NANOSOLCEL/377756). Financial support from the European Union (Marie Curie Initial Training Network DESTINY/FP7—Grant Agreement 316494) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polycarpos Falaras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vaenas, N., Stergiopoulos, T., Falaras, P. (2015). Titania Nanotubes for Solar Cell Applications. In: Losic, D., Santos, A. (eds) Electrochemically Engineered Nanoporous Materials. Springer Series in Materials Science, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-319-20346-1_9

Download citation

Publish with us

Policies and ethics