Chemical and Structural Modifications of Nanoporous Alumina and Its Optical Properties

  • Agnieszka Brzózka
  • Anna Brudzisz
  • Katarzyna Hnida
  • Grzegorz D. Sulka
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 220)


A growing scientific interest in the fabrication of porous anodic aluminum oxide (AAO) films and their further applications for the fabrication of various devices, has given rise to many studies of porous alumina properties. Highly ordered porous alumina exhibits some unique physical and optical characteristics, especially in the visible spectrum. These properties are of technological importance for applications in the fields of micro and nanotechnology.


Photonic Crystal Oxalic Acid Anodic Aluminum Oxide Localize Surface Plasmon Resonance Porous Alumina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Some of the research presented here was supported by the National Science Centre (Grant No. 2011/01/N/ST5/02510).


  1. 1.
    K.P. Han, J.L. Fang, Decorative-protective coatings on aluminum. Surf. Coat. Tech. 88, 178–182 (1996)Google Scholar
  2. 2.
    L. Anicai, A. Meghea, C. Sirean, L. Dima, Analysis of electrochemically coloured aluminium anodic films by diffuse reflectance spectra. Mater. Sci. Forum 185–188, 489–496 (1995)Google Scholar
  3. 3.
    F. Behzadi, M. Moradi, H.R. Karimi-Alavijeh, A. Gharavi, The effect of anodization voltage and surface morphology on the capacitance properties of Al-Al2O3-Al nanocapacitors. Vacuum 99, 204–210 (2014) Google Scholar
  4. 4.
    G.D. Sulka, A. Brzózka, L. Zaraska, M. Jaskuła, Through-hole membranes of nanoporous alumina formed by anodizing in oxalic acid and their applications in fabrication of nanowire arrays. Electrochim. Acta 55, 4368–4376 (2010)Google Scholar
  5. 5.
    T. Gao, J.C. Fan, G.W. Meng, Z.Q. Chu, L.D. Zhang, Thin Au film with highly ordered arrays of hemispherical dots. Thin Solid Films 401, 102–105 (2001)Google Scholar
  6. 6.
    K. Nielsch, F.J. Castaño, S. Matthias, W. Lee, C.A. Ross, Synthesis of cobalt/polymer multilayer nanotubes. Adv. Eng. Mater. 7, 217–221 (2005)Google Scholar
  7. 7.
    H. Masuda, H. Tanaka, N. Baba, Preparation of porous material by replacing microstructure of anodic alumina film with metal. Chem. Lett. 19, 621–622 (1990)Google Scholar
  8. 8.
    Sulka, G.D.: Highly ordered anodic porous alumina formation by self-organised anodising and template-assisted fabrication of nanostructured materials, ed. by A. Eftekhari. Nanostructured Materials in Electrochemistry (Wiley-VCH, 2008), pp. 1–116Google Scholar
  9. 9.
    S.A. Bagshaw, T.J. Pinnavaia, Mesoporous alumina molecular sieves. Angew. Chem. Int. Ed. Engl. 35, 1102–1105 (1996)Google Scholar
  10. 10.
    M.D. Henry, S. Walavalkar, A. Homyk, A. Scherer, Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars. Nanotechnology 20, 255305 (2009)Google Scholar
  11. 11.
    H. Moghadam, A. Samimi, Solar absorptivity of nano-porous anodic alumina (NPAA): effects of structural features. J. Porous Mater. 21, 331–336 (2014)Google Scholar
  12. 12.
    W.L. Xu, H. Chen, M.J. Zheng, G.Q. Ding, W.Z. Shen, Optical transmission spectra of ordered porous alumina membranes with different thicknesses and porosities. Opt. Mater. 28, 1160–1165 (2006)Google Scholar
  13. 13.
    G.D. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, J.-P. Celis, Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid. J. Electrochem. Soc. 149, D97–D103 (2002)Google Scholar
  14. 14.
    G.D. Sulka, M. Jaskuła, Defects analysis in self-organized nanopore arrays formed by anodization of aluminium at various temperatures. J. Nanosci. Nanootechnol. 6, 3803–3811 (2006)Google Scholar
  15. 15.
    G.D. Sulka, K.G. Parkoła, Anodising potential influence on well-ordered nanostructures foremd by anodisation of aluminium in sulphuric acid. Thin Solid Films 515, 338–345 (2006)Google Scholar
  16. 16.
    G.D. Sulka, K.G. Parkoła, Temperature infuence on well-ordered nanopore grown by anodization of auminium in sulphuric acid. Electrochim. Acta 52, 1880–1888 (2007)Google Scholar
  17. 17.
    G.D. Sulka, W.J. Stępniowski, Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures. Electrochim. Acta 54, 3683–3691 (2009)Google Scholar
  18. 18.
    L. Zaraska, G.D. Sulka, M. Jaskuła, The effect of n-alcohols on porous anodic alumina formed by self-organized two-step anodizing of aluminum in phosphoric acid. Surf. Coat. Technol. 204, 1729–1737 (2010)Google Scholar
  19. 19.
    W. Lee, S.-J. Park, Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev. 114, 7487–7556 (2014)Google Scholar
  20. 20.
    W. Lee, J.-C. Kim, U. Gösele, Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions. Adv. Funct. Mater. 20, 21–27 (2010)Google Scholar
  21. 21.
    H. Han, S.J. Parh, J.S. Jang, H. Ryu, K.J. Kim, S. Baik, W. Lee, In situ determination of the pore opening point during wet-chemical etching of the barrier layer of porous anodic aluminum oxide: nonuniform impurity distribution in anodic oxide. ACS Appl. Mater. Interfaces 5, 3441–3448 (2013)Google Scholar
  22. 22.
    G.E. Thompson, R.C. Furneaux, G.C. Wood, Electron microscopy of ion beam thinned porous anodic films formed on aluminium. Corros. Sci. 18, 481–498 (1978)Google Scholar
  23. 23.
    G. Meng, F. Han, X. Zhao, B. Chen, D. Yang, J. Liu, Q. Xu, M. Kong, X. Zhu, Y.J. Jung, Y. Yang, Z. Chu, M. Ye, S. Kar, R. Vajtai, P.A. Ajayan, A general synthetic approach to interconnected nanowire/nanotube and nanotube/nanowire/nanotube heterojunctions with branched topology. Angew. Chem. Int. Ed. 48, 7166–7170 (2009)Google Scholar
  24. 24.
    Y.T. Tian, G.W. Meng, T. Gao, S.H. Sun, T. Xie, X.S. Peng, C.H. Ye, L.D. Zhang, Alumina nanowire arrays standing on a porous anodic alumina membrane. Nanotechnology 15, 189–191 (2004)Google Scholar
  25. 25.
    L. Zaraska, E. Kurowska, G.D. Sulka, M. Jaskuła, Porous alumina membranes with branched nanopores as templates for fabrication of y-shaped nanowire arrays. J. Solid State Electrochem. 16, 3611–3619 (2012)Google Scholar
  26. 26.
    K.O. Jeong, Y.C. Choi, J. Kim, J.K. Han, S.A. Yang, S.D. Bu, Porous alumina templates with various shaped nanochannels. J. Korean Phys. Soc. 51, S105–S110 (2007)Google Scholar
  27. 27.
    G. Meng, Y.J. Jung, A. Cao, R. Vajtai, P.M. Ajayan, Controlled fabrocation of hierarchically branched nanopores, nanotubes, and nanowires. Proc. Nat. Acad. Sci. 102, 7074–7078 (2005)Google Scholar
  28. 28.
    W. Cheng, M. Steinhart, U. Gösele, R.B. Wehrspohn, Tree-like alumina nanopores generated in a non-steady-state anodization. J. Mater. Chem. 17, 3493–3495 (2007)Google Scholar
  29. 29.
    A.Y.Y. Ho, H. Gao, Y.C. Lam, I. Rodríguez, Controlled fabrication of multitiered three-dimensional nanostructures in porous alumina. Adv. Funct. Mater. 18, 2057–2063 (2008)Google Scholar
  30. 30.
    B. Wang, G.T. Fei, M. Wang, M.G. Kong, D. Zhang, Preparation of photonic crystals made of air pores in anodic alumina. Nanotechnology 18, 1–4 (2007)Google Scholar
  31. 31.
    J. Ferré-Borrull, M.M. Rahman, J. Pallarès, L.F. Marsal, Tuning nanoporous anodic alumina distributed-Bragg reflectors with the number of anodization cycles and the anodization temperature. Nanoscale Res. Lett. 9(416), 1–6 (2014)Google Scholar
  32. 32.
    Z.-Y. Ling, S.-S. Chen, X. Hu, X. Hu, Y. Li, Optical transmission spectra of anodic aluminum oxide membranes with a dual layer-by-layer structure. Chinese Phys. Lett. 26, 1–3 (2009)Google Scholar
  33. 33.
    X. Hu, Y.J. Pu, Z.Y. Ling, Y. Li, Coloring of aluminum using photonic crystals of porous alumina with electrodeposited Ag. Opt. Mater. 32, 382–386 (2009)Google Scholar
  34. 34.
    M.M. Rahman, L.F. Marsal, J. Pallares, J.F. Borrull, Tuning the photonic stop bands of nanoporous anodic alumina-based distributed Bragg reflectors by pore widening. ACS Appl. Mater. Interfaces 5, 13375–13381 (2013)Google Scholar
  35. 35.
    Y. Su, G.T. Fei, Y. Zhang, P. Yan, H. Li, G.L. Shang, L.D. Zhang, Controllable preparation of the ordered pore arrays anodic alumina with high-quality photonic band gaps. Mater. Lett. 65, 2693–2695 (2011)Google Scholar
  36. 36.
    C.K. Chung, R.X. Zhou, T.Y. Liu, W.T. Chang, Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99 %) aluminium at room temperature. Nanotechnology 20(055301), 1–5 (2009)Google Scholar
  37. 37.
    W. Lee, R. Ji, U. Gösele, K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741–747 (2006)Google Scholar
  38. 38.
    W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, U. Gösele, Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat. Nanotechnol. 3, 234–239 (2008)Google Scholar
  39. 39.
    W. Lee, R. Scholz, U. Gösele, A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum. Nano Lett. 8, 2155–2160 (2008)Google Scholar
  40. 40.
    W. Lee, J.-C. Kim, Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization. Nanotechnology 21, 1–8 (2010)Google Scholar
  41. 41.
    K. Pitzschel, J.M. Montero Moreno, J. Escrig, O. Albrecht, K. Nielsch, J. Bachmann, Controlled introduction of diameter modulations in arrayed magnetic iron oxide nanotubes. ACS Nano 3, 3463–3468 (2009)Google Scholar
  42. 42.
    K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, U. Gösele, Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization. ACS Nano 2, 302–310 (2008)Google Scholar
  43. 43.
    G.D. Sulka, A. Brzózka, L. Liu, Fabrication of diameter-modulated and ultrathin porous nanowires in anodic auminum oxide templates. Electrochim. Acta 56, 4972–4979 (2011)Google Scholar
  44. 44.
    G.D. Sulka, K. Hnida, Distributed Bragg reflector based on porous anodic alumina fabricated by pulse anodization. Nanotechnology 23, 1–8 (2012)Google Scholar
  45. 45.
    D. Losic, M. Lillo, D. Losic, Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization. Small 5, 1392–1397 (2009)Google Scholar
  46. 46.
    D. Losic, D. Losic, Preparation of porous anodic alumina with periodically perforated pores. Langmuir 25, 5426–5431 (2009)Google Scholar
  47. 47.
    M. Noormohammadi, M. Moradi, M.A. Kashi, A. Ramazani, Y. Mayamai, Structural engineering of nanoporous alumina by controlling the anodization voltage during the spontaneous current oscillation in hard anodization. Surf. Coat. Tech. 223, 104–109 (2013)Google Scholar
  48. 48.
    M. Raoufi, H. Schonherr, Improved synthesis of anodized aluminum oxide with modulated pore diameters for the fabrication of polymeric nanotubes. RSC Adv. 3, 13429–13436 (2013)Google Scholar
  49. 49.
    W.J. Zheng, G.T. Fei, B. Wang, Z. Jin, L.D. Zhang, Distributed Bragg reflector made of anodic alumina membrane. Mater. Lett. 63, 706–709 (2009)Google Scholar
  50. 50.
    W.J. Zheng, G.T. Fei, B. Wang, L.D. Zhang, Modulation of transmission spectra of anodized alumina membrane distributed Bragg reflector by controlling anodization temperature. Nanoscale Res. Lett. 4, 665–667 (2009)Google Scholar
  51. 51.
    A. Santos, L. Vojkuvka, M. Alba, V.S. Balderrama, J. Ferre-Borrull, J. Pallares, L.F. Marsal, Understanding and morphology control of pore modulations in nanoporous anodic alumina by discontinuous anodization. Phys. Status Solidi A 209, 2045–2048 (2012)Google Scholar
  52. 52.
    C.K. Chung, M.W. Liao, O.K. Khor, Fabrication of porous anodic aluminum oxide by hybrid pulse anodization at relatively high potential. Microsyst. Technol. 20, 1827–1832 (2014)Google Scholar
  53. 53.
    W. Lee, The anodization of aluminum for nanotechnology applications. JOM 62, 57–63 (2010)Google Scholar
  54. 54.
    T. Nagaura, F. Takeuchi, S. Inoue, Fabrication and structural control of anodic alumina films with inverted cone porous structure using multi-step anodizing. Electrochim. Acta 53, 2109–2114 (2008)Google Scholar
  55. 55.
    T. Nagaura, F. Takeuchi, Y. Yamauchi, K. Wada, S. Inoue, Fabrication of ordered Ni nanocones using a porous anodic alumina template. Electrochem. Comm. 10, 681–685 (2008)Google Scholar
  56. 56.
    Y. Yamauchi, T. Nagamura, A. Ishikawa, T. Chikyow, S. Inoue, Evolution of standing mesochannels on porous anodic alumina substrates with designed conical holes. J. Am. Chem. Soc. 130, 10165–10170 (2008)Google Scholar
  57. 57.
    A. Yamaguchi, K. Hotta, N. Teramae, Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film. Anal. Chem. 81, 105–111 (2009)Google Scholar
  58. 58.
    W.S. Im, Y.S. Cho, G.S. Choi, F.C. Yu, D.J. Kim, Stepped carbon nanotubes synthesized in anodic aluminum oxide templates. Diam. Relat. Mater. 13, 1214–1217 (2004)Google Scholar
  59. 59.
    R. Krishnan, C.V. Thompson, Monodomain high-aspect-ratio 2D and 3D ordered porous alumina structures with independently controlled pore spacing and diameter. Adv. Mater. 19, 988–992 (2007)Google Scholar
  60. 60.
    Y.T. Tian, G.M. Meng, G.Z. Wang, F. Phillipp, S.H. Sun, L.D. Zhang, Step-shaped bismuth nanowires with metal-semiconductor junction characteristics. Nanotechnology 17, 1041–1045 (2006)Google Scholar
  61. 61.
    Y.C. Sui, D.R. Acosta, J.A. Gonzalez-Leon, A. Bermudez, J. Feuchtwanger, B.Z. Cui, J.O. Flores, J.M. Saniger, Structure, thermal stability, and deformation of multibranched carbon nanotubes synthesized by CVD in the AAO template. J. Phys. Chem. B 105, 1523–1527 (2001)Google Scholar
  62. 62.
    Y.C. Sui, J.A. Gonzales-Leon, A. Bermudez, J.M. Saniger, Synthesis of multi branched carbon nanotubes in porous anodic aluminum oxide template. Carbon 39, 1709–1715 (2001)Google Scholar
  63. 63.
    X. Zhu, L. Liu, Y. Song, H. Jia, H. Yu, X. Xiao, X. Yang, Oxygen bubble mould effect: serrated nanopore formation and porous alumina growth. Monatsh. Chem. 139, 999–1003 (2008)Google Scholar
  64. 64.
    M. Ghrib, R. Ouertani, M. Gaidi, N. Khedher, M.B. Salem, H. Ezzaouia, Effect of annealing on photoluminescence and optical properties of porous anodic alumina films formed in sulfuric acid for solar energy applications. Appl. Surf. Sci. 258, 4995–5000 (2012)Google Scholar
  65. 65.
    S. Gong, A. Stolz, G. Myeong, E. Dogheche, A. Gokarna, S. Ryu, D. Decoster, Y. Cho, Effect of varying pore size of AAO films on refractive index and birefringence measured by prism coupling technique. Opt. Lett. 36, 4272–4274 (2011)Google Scholar
  66. 66.
    S. Green, J.A. Badan, M. Gilles, A. Cortes, G. Riveros, D. Ramirez, H. Gomez, E. Quagliata, E.A. Dalchiele, R.E. Marotti, Optical properties of nanoporous Al2O3 obtained by aluminum anodization. Phys. Status Solidi A 4, 618–621 (2007)Google Scholar
  67. 67.
    K. Kant, S.P. Low, A. Marshal, J.G. Shapter, D. Losic, Nanopore gradients on porous aluminum oxide generated by nonuniform anodization of aluminum. ACS Appl. Interfaces 2, 3447–3454 (2010)Google Scholar
  68. 68.
    Y. Liu, H.H. Wang, J.E. Indacochea, M.L. Wang, A colorimetric sensor based on anodized aluminum oxide (AAO) substrate for the detection of nitroaromatics. Sensor. Actuat. B-Chem. 160, 1149–1158 (2011)Google Scholar
  69. 69.
    A. Markovics, G. Nagy, B. Kovacs, Reflection-based sensor for gaseous ammonia. Sensor. Actuat. B-Chem. 139, 252–257 (2009)Google Scholar
  70. 70.
    A. Markovics, B. Kovacs, Fabrication of optical chemical ammonia sensors using anodized alumina supports and sol-gel method. Talanta 109, 101–106 (2013)Google Scholar
  71. 71.
    L.F. Marsal, L. Vojkouvka, J. Ferre-Borrull, T. Trifonov, J. Pallares, Optical characterization of self-ordered porous alumina membranes of various thicknesses. Phys. Status Solidi C 4, 1918–1922 (2007)Google Scholar
  72. 72.
    J. Marthe, E. Meillot, G. Jeandel, F. Enguehard, J. Ilavsky, Enhancement of scattering and reflectance properties of plasma-sprayed alumina coatings by controlling the porosity. Surf. Coat. Tech. 220, 80–84 (2013)Google Scholar
  73. 73.
    Q. Xu, H.-Y. Sun, Y.-H. Yang, L.-H. Liu, Z.-Y. Li, Optical properties and color generation mechanism of porous anodic alumina films. Appl. Surf. Sci. 258, 1826–1830 (2011)Google Scholar
  74. 74.
    Q. Xu, Y. Yang, J. Gu, Z. Li, H. Sun, Influence of Al substrate on the optical properties of porous anodic alumina films. Mater. Lett. 74, 137–139 (2012)Google Scholar
  75. 75.
    W. Zaghdoudi, M. Gaidi, R. Chtourou, Microstructural and optical properties of porous alumina elaborated on glass substrate. J. Mater. Eng. Perform. 23, 869–874 (2013)Google Scholar
  76. 76.
    H. Efeoglu, T. Karacali, K. Meral, I.Y. Erdogan, Y. Onganer, Anodization of aluminium thin films on p++ Si and annihilation of strong luminescence from Al2O3. J. Lumin. 130, 157–162 (2010)Google Scholar
  77. 77.
    D.H. Fan, G.Q. Ding, W.Z. Shen, M.J. Zheng, Anion impurities in porous alumina membranes: existence and functionality. Micropor. Mesopor. Mater. 100, 154–159 (2007)Google Scholar
  78. 78.
    T. Gao, G.-W. Meng, L.-D. Zhang, Origin of the blue luminescence in porous anodic alumina films formed in oxalic acid solutions. Chinese Phys. Lett. 20, 713–716 (2003)Google Scholar
  79. 79.
    T. Gao, G.-W. Meng, L.-D. Zhang, Blue luminescence in porous anodic alumina films: the role of the oxalic impurities. J. Phys.: Condens. Matter 15, 2071–2079 (2003)Google Scholar
  80. 80.
    T. Gao, G.-W. Meng, L.-D. Zhang, Ultraviolet photoluminescence of porous anodic alumina films. Chinese Sci. Bull. 48, 1090–1092 (2003)Google Scholar
  81. 81.
    Y. Kurashima, Y. Yokota, I. Miyamoto, H. Katura, Y. Sakakibara, Mode-locking nanoporous alumina membrane embedded with carbon nanotube saturable absorber. Appl. Phys. Lett. 94(223102), 1–3 (2009)Google Scholar
  82. 82.
    Y.X. Gan, X. Zeng, L. Su, L. Yang, B.J. Gan, L. Zhang, Synthesis and enhanced light absorption of alumina matrix nanocomposites containing multilayer oxide nanorods and silver nanoparticles. Mater. Res. Bull. 46, 1828–1836 (2011)Google Scholar
  83. 83.
    Y. Li, G.H. Li, G.W. Meng, L.D. Zhang, F. Phillipp, Photoluminescence and optical absorption caused by the f+ centres in anodic alumina membranes. J. Phys.: Condens. Matter 13, 2691–2699 (2001)Google Scholar
  84. 84.
    T. Li, S. Yang, L. Huang, J. Zhang, B. Gu, Y. Du, Strong photoluminescence from Cr3+ doped porous anodic alumina. J. Phys.: Condens. Matter 16, 2463–2469 (2004)Google Scholar
  85. 85.
    N.I. Mukhurov, S.P. Zhvavyi, I.V. Gasenkova, S.N. Terekhov, P.P. Pershukevich, V.A. Orlovich, Photoluminescence of F-centers in films of anodic alumina. J. Appl. Spectrosc. 77, 549–555 (2010)Google Scholar
  86. 86.
    C. Xu, Q. Xue, Y. Zhong, Y. Cui, L. Ba, B. Zhao, N. Gu, Photoluminescent blue-shift of organic molecules in nanometre pores. Nanotechnology 13, 47–50 (2002)Google Scholar
  87. 87.
    Y. Yang, Q. Gao, Influence of sulfosalicylic acid in the electrolyte on the optical properties of porous anodic alumina membranes. Phys. Lett. A 333, 328–333 (2004)Google Scholar
  88. 88.
    S. Garabagiu, G. Mihailescu, Thinning anodic aluminum oxide films and investigating their optical properties. Mater. Lett. 65, 1648–1650 (2011)Google Scholar
  89. 89.
    G. Peitao, X. Zhilin, X. Yiyu, H. Caihua, Z. Lixin, Morphology and transmittance of porous alumina on glass substrate. Appl. Surf. Sci. 257, 3307–3312 (2011)Google Scholar
  90. 90.
    C. Hong, T.T. Tang, C.-Y. Hung, R.-P. Pan, W. Fang, Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications. Nanotechnology 21, 1–10 (2010)Google Scholar
  91. 91.
    C.H. Jeon, D.H. Kim, Y.S. Lee, J.K. Han, Y.C. Choi, S.D. Bu, H.Y. Shin, S. Yoon, Strong pore-size dependence of the optical properties in porous alumina membranes. J. Korean Phys. Soc. 63, 1789–1793 (2013)Google Scholar
  92. 92.
    L.-R. Zhao, J. Wang, Y. Li, Ch-W Wang, F. Zhou, W.-M. Liu, Anodic aluminum oxide films formed in mixed electrolytes of oxalic and sulfuric acid and their optical constants. Physica B 405, 456–460 (2010)Google Scholar
  93. 93.
    Y. Katsuta, A. Yasumori, K. Wada, K. Kurashima, S. Suehara, S. Inoue, Three-dimensionally nanostructured alumina film on glass substrate: anodization of glass surface. J. Non-Cryst. Solids 354, 451–455 (2008)Google Scholar
  94. 94.
    Y.-F. Liu, Y.-F. Tu, S.-Y. Huang, J.-P. Sang, X.-W. Zou, Effect of etch-treatment upon the intensity and peak position of photoluminescence spectra for anodic alumina films with ordered nanopore array. J. Mater. Sci. 44, 3370–3375 (2009)Google Scholar
  95. 95.
    S. Jeon, D.-H. Kang, G.W. Lee, Difference of optical properties between porous alumina and sapphire using two-substrate method at elevated temperature. Curr. Appl. Phys. 13, 1594–1599 (2013)Google Scholar
  96. 96.
    C.-H. Peng, C.-C. Hwang, C.-S. Hsiao, Structure and photoluminescence properties of strong blue-emitting alumina film developed from a liquid sol at low temperature. J. Alloy. Compd. 491, 129–132 (2010)Google Scholar
  97. 97.
    S. Stojadinovic, I. Belca, M. Tadic, B. Kasalica, Z. Nedic, L. Zekovic, Galvanoluminescence properties of porous oxide films formed by anodization of aluminum in malonic acid. J. Electroanal. Chem. 619–620, 125–130 (2008)Google Scholar
  98. 98.
    S. Stojadinovic, Z. Nedic, I. Belca, R. Vasilic, B. Kasalica, M. Petkovic, L. Zekovic, The effect of annealing on the photoluminescent and optical properties of porous anodic alumina films formed in sulfamic acid. Appl. Surf. Sci. 256, 763–767 (2009)Google Scholar
  99. 99.
    S. Stojadinovic, R. Vasilic, Z. Nedic, B. Kasalica, I. Belca, L. Zekovic, Photoluminescen properties of barrier anodic oxide films on aluminum. Thin Solid Films 519, 3516–3521 (2011)Google Scholar
  100. 100.
    I. Vrublevsky, A. Jagminas, S. Hemeltjen, W.A. Goedel, Effect of heat treatment on the structure of incorporated oxalate species and photoluminescent properties of porous alumina films formed in oxalic acid. J. Solid State Electrochem. 254, 7326–7330 (2008)Google Scholar
  101. 101.
    I.A. Vrublevsky, K.V. Chernyakova, A. Ispas, A. Bund, N. Gaponik, A. Dubavik, Photoluminescence properties of heat-treated porous alumina films formed in oxalic acid. J. Lumin. 131, 938–942 (2011)Google Scholar
  102. 102.
    J. Wang, C.-W. Wang, Y. Li, W.-M. Liu, Optical constans of anodic aluminum oxide films formed in oxalic acid solution. Thin Solid Films 516, 7689–7694 (2008)Google Scholar
  103. 103.
    Z. Xia, Q. Xu, P. Guo, R. Wu, Laser-induced damage characteristic of porous alumina optical films. Opt. Commun. 284, 4033–4037 (2011)Google Scholar
  104. 104.
    W.L. Xu, M.J. Zheng, S. Wu, W.Z. Shen, Effects of high-temperature annealing on structural and optical properties of highly ordered porous alumina membranes. Appl. Phys. Lett. 85, 4364–4366 (2004)Google Scholar
  105. 105.
    X. Wang, H. Zhang, D. Zhang, Y. Ma, H.-J. Fecht, J.Z. Jiang, Color tuning by local sputtering metal nanolayer on microstructured porous alumina. Microsc. Res. Techniq. 75, 698–701 (2012)Google Scholar
  106. 106.
    Y. Zhang, S.J. Son, H. Ju, Anodized aluminum oxide membranes of tunable porosity with platinum nanoscale-coating for photonic application. Curr. Appl. Phys. 12, 1561–1565 (2012)Google Scholar
  107. 107.
    H.M. Chen, C.F. Hsin, R.-S. Liu, S.-F. Hu, C.-Y. Huang, Controlling optical properties of aluminum oxide using electrochemical deposition. J. Electrochem. Soc. 154, K11–K14 (2007)Google Scholar
  108. 108.
    F. Davione, P.A. Galione, J.R. Ramos-Barrado, D. Leinen, F. Martin, E.A. Dalchiele, R.E. Marotti, Modeling of gradient index solar selective surfaces for solar thermal applications. Sol. Energy 91, 316–326 (2013)Google Scholar
  109. 109.
    J.-J. Zhang, Z.-Y. Li, Z.J. Zhang, T.-S. Wu, H.-Y. Sun, Optical and magnetic properties of porous anodic alumina/Ni nanocomposite films. J. Appl. Phys. 113(244305), 1–5 (2013)Google Scholar
  110. 110.
    J.-J. Zhang, Z.-Y. Li, H.-M. Zhang, H. Xue, H.-Y. Sun, Optical and magnetic properties of porous anodic alumina films embedded with Co nanowires. Chinese Phys. B 22(087805), 1–4 (2013)Google Scholar
  111. 111.
    K. Huang, Y. Li, Z. Wu, C. Li, H. Lai, J. Kang, Asymmetric light reflectance effect in AAO on glass. Opt. Express 19, 1301–1309 (2011)Google Scholar
  112. 112.
    T. Zhang, Z. Gong, R. Giorno, L. Que, A nanostructured Fabry-Pérot interferometer. Opt. Express 18, 20282–20288 (2010)Google Scholar
  113. 113.
    F. Trivinho-Strixino, H.A. Guerreio, C.S. Gomes, E.C. Pereira, F.E.G. Guimaraes, Active waveguide effects from porous anodic alumina: an optical sensor proposition. Appl. Phys. Lett. 97(011902), 1–3 (2010)Google Scholar
  114. 114.
    L.P. Hernandez-Eguia, J. Ferre-Borrull, G. Macias, J. Pallares, L.F. Marsal, Engineering optical properties of gold-coated nanoporous anodic alumina for biosensing. Nanoscale Res. Lett. 9, 1–8 (2014)Google Scholar
  115. 115.
    G.S. Huang, X.L. Wu, G.G. Siu, P.K. Chu, On the origin of light emission from porous anodic alumina formed in sulfuric acid. Solid State Commun.137, 621–624 (2006)Google Scholar
  116. 116.
    K. Huang, L. Pu, Y. Shi, P. Han, R. Zhang, Y.D. Zheng, Photoluminescence oscillations in porous alumina films. Appl. Phys. Lett. 89(201118), 1–2 (2006)Google Scholar
  117. 117.
    S. Gardelis, A.G. Nassiopoulou, V. Giannetta, M. Theodoropoulou, Photoluminescence-induced oscillations in porous anodic aluminum oxide films grown on Si: effect of the interface and porosity. J. Appl. Phys. 107(113104), 1–5 (2010)Google Scholar
  118. 118.
    I. Vrublevsky, A. Jagminas, S. Hemeltjen, W. Goedel, Behavior of acid species during heat treatment and re-anodizing of porous alumina films formed in malonic acid. J. Solid State Electrochem. 13, 1873–1880 (2009)Google Scholar
  119. 119.
    K.-W. Lee, T.-H. Yang, W.-L. Lu, M.-P. Houng, Fabricating 20 cm × 20 cm porous template using anodic aluminum oxide. Integr. Ferroelectr. 143, 47–57 (2013)Google Scholar
  120. 120.
    X. Liu, F. Xu, Z. Li, W. Zhang, Photoluminescence of poly(thiophene) nanowires confined in porous anodic alumina membrane. Polymer 49, 2197–2201 (2008)Google Scholar
  121. 121.
    W.J. Stępniowski, M. Norek, M. Michalska-Domańska, A. Bombalska, A. Nowak-Stępniowska, M. Kwaśny, Z. Bojar, Fabrication of anodic aluminium oxide with incorporated chromate ions. Appl. Surf. Sci. 259, 324–330 (2012)Google Scholar
  122. 122.
    W.J. Stępniowski, M. Norek, M. Michalska-Domańska, A. Nowak-Stępniowska, A. Bombalska, M. Włodarski, Z. Bojar, Incorporation of copper chelate ions into anodic alumina walls. Mater. Lett. 106, 242–245 (2013)Google Scholar
  123. 123.
    Y. Du, W.L. Cai, C.M. Mo, J. Chen, L.D. Zhang, X.G. Zhu, Preparation and photoluminescence of alumina membranes with ordered pore arrays. Appl. Phys. Lett. 74, 2951–2953 (1999)Google Scholar
  124. 124.
    J.H. Chen, C.P. Huang, C.G. Chao, T.M. Chen, The investigation of photoluminescence centers in porous alumina membranes. Appl. Phys. A-Mater. 84, 297–300 (2006)Google Scholar
  125. 125.
    J. Hohlbein, U. Rehn, R.B. Wehrspohn, In-situ optical characterization of porous alumina. Phys. Status Solidi A 201, 803–807 (2004)Google Scholar
  126. 126.
    K.H. Lee, J.H. Crawford Jr, Luminescence of the F-center in sapphire. Phys. Rev. B 19, 3217–3221 (1979)Google Scholar
  127. 127.
    S. Jheeta, D.C. Jain, R. Kumar, F. Singh, K.B. Garg, Photoluminescence study of swift heavy ion (SHI) induced defect centers in sapphire. J. Nucl. Mater. 353, 190–192 (2006)Google Scholar
  128. 128.
    A. Santos, T. Kumeira, D. Losic, Nanoporous anodic alumina: a versatile platform for optical biosensors. Materials 7, 4297–4320 (2014)Google Scholar
  129. 129.
    G.S. Huang, X.L. Wu, Y.F. Mei, X.F. Shao, Strong blue emission from anodic alumina membranes with ordered nanopores. J. Appl. Phys. 93, 582–585 (2003)Google Scholar
  130. 130.
    M.E. Nasir, B. Hamilton, Measurement of the physical and electronic properties of ordered nanoporous alumina using XUV excitation spectroscopy. J. Phys. D Appl. Phys. 42(195404), 1–7 (2009)Google Scholar
  131. 131.
    T.-E. Nee, C.-H. Fang, J.-C. Wang, P.-L. Fan, J.-A. Jiang, Characterization of the anomalous luminescence properties from self-ordered porous anodic alumina with oxalic acid electrolytes. Thin Solid Films. 518, 1439–1442 (2009)Google Scholar
  132. 132.
    Y.-L. Shi, X.-G. Zhang, H.-L. Li, Enhanced photoluminescence of Eu(III)-anchored porous anodic alumina films. Spectrosc. Lett. 34, 419–426 (2001)Google Scholar
  133. 133.
    J. Wang, C.-W. Wang, S.-Y. Li, F. Zhou, The effect of oxalic and sulfuric ions on the photoluminescence of anodic aluminium oxide formed in a mixture of sulfuric and oxalic acid. Appl. Phys. A-Mater. 94, 939–942 (2009)Google Scholar
  134. 134.
    I. Vrublevsky, A. Jagminas, S. Hemeltjen, W.A. Goadel, Photoluminescent behavior of heat-treated porous alumina films formed in malonic acid. Appl. Surf. Sci. 256, 2013–2017 (2010)Google Scholar
  135. 135.
    Y. Yamamoto, N. Baba, S. Tajima, Coloured materials and photoluminescence centres in anodic film on aluminium. Nature 289, 572–574 (1981)Google Scholar
  136. 136.
    P.P. Pershukevich, D.V. Shabov, V.P. Osipov, J. Schreiber, V.A. Lapina, Luminescence properties of oxide coatings of aluminum alloys. J. Appl. Spectrosc. 78, 524–533 (2011)Google Scholar
  137. 137.
    M. Kokonou, A.G. Nassiopoulou, A. Travlos, Structural and photoluminescence properties of thin alumina films on silicon, fabricated by electrochemistry. Mater. Sci. Eng. B-Adv. 101, 65–70 (2003)Google Scholar
  138. 138.
    A. Rauf, M. Mehmood, M. Ahmed, M. Hasan, M. Aslam, Effects of ordering quality of the pores on the photoluminescence of porous anodic alumina prepared in oxalic acid. J. Lumin. 130, 792–800 (2010)Google Scholar
  139. 139.
    Y.B. Li, M.J. Zheng, L. Ma, High-speed growth and photoluminescence of porous anodic alumina films with controllable interpore distances over a large range. Appl. Phys. Lett. 91(073109), 1–3 (2007)Google Scholar
  140. 140.
    Y. Li, M. Zheng, M. Li, W. Shen, Fabrication of highly ordered nanoporous alumina films by stable high-field anodization. Nanotechnology 17, 5101–5105 (2006)Google Scholar
  141. 141.
    L. Zaraska, G.D. Sulka, M. Jaskuła, Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time. J. Solid State Electrochem. 15, 2427–2436 (2011)Google Scholar
  142. 142.
    A. Santos, M. Alba, M.M. Rahman, P. Formentin, J. Ferre-Borrull, J. Pallares, L.F. Marsal, Structural tuning of photoluminescence in nanoporous anodic alumina by hard anodization in oxalic and malonic acids. Nanoscale Res. Lett. 7, 1–11 (2012)Google Scholar
  143. 143.
    I.A. Vrublevsky, K.V. Chernyakova, A. Ispas, A. Bund, S. Zavadski, Optical properties of thin anodic alumina membranes formed in a solution of tartaric acid. Thin Solid Films 556, 230–235 (2014)Google Scholar
  144. 144.
    G.H. Li, Y. Zhang, L.D. Zhang, Wavelength dependent photoluminescence of anodic alumina membranes. J. Phys.: Condens. Matter 15, 8663–8671 (2003)Google Scholar
  145. 145.
    Z. Li, K. Huang, Blue luminescence in porous anodic alumina films. J. Phys.: Condens. Matter 19, 1–7 (2007)Google Scholar
  146. 146.
    N.I. Mukhurov, S.P. Zhvavyi, S.N. Terekhov, A.Y. Panarin, I.F. Kotova, P.P. Perhukevich, I.A. Khodasevich, I.V. Gasenkova, V.A. Orlovich, Influence of electrolyte composition on photoluminescent properties of anodic aluminum oxide. J. Appl. Spectrosc. 75, 214–218 (2008)Google Scholar
  147. 147.
    G.G. Khan, A.K. Singh, K. Mandal, Structure dependent photoluminescence of nanoporous amorphous anodic aluminium oxide membranes: role of F+ center defects. J. Lumin. 134, 772–777 (2013)Google Scholar
  148. 148.
    Y.F. Mei, G.G. Siu, J.P. Zou, X.L. Wu, Color centers vs electrolytes for Si-based porous anodic alumina. Phys. Lett. A 324, 479–483 (2004)Google Scholar
  149. 149.
    Y. Li, Ch-W Wang, L.-R. Zhao, W.-M. Liu, Photoluminescence properties of porous anodic aluminium oxide membranes formed in mixture of sulfuric and oxalic acid. J. Phys. D Appl. Phys. 42(045407), 1–5 (2009)Google Scholar
  150. 150.
    A. Nourmohammadi, S.J. Asadabadi, M.H. Yousefi, M. Ghasemzadeh, Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid. Nanoscale Res. Lett. 7, 1–7 (2012)Google Scholar
  151. 151.
    Z. Li, K. Huang, Optical properties of alumina membranes prepared by anodic oxidation process. J. Lumin. 127, 435–440 (2007)Google Scholar
  152. 152.
    S. Shingubara, Fabrication of nanomaterials using porous alumina templates. J. Nanopart. Res. 5, 17–30 (2003)Google Scholar
  153. 153.
    X. Sun, F. Xu, Z. Li, W. Zhang, Photoluminescence properties of anodic alumina membranes with ordered nanopore arrays. J. Lumin. 121, 588–594 (2006)Google Scholar
  154. 154.
    Z. Li, K. Huang, The effect of high-temperature annealing on optical properties of porous anodic alumina formed in oxalic acid. Luminescence 22, 355–361 (2007)Google Scholar
  155. 155.
    Y. Han, L. Cao, F. Xu, T. Chen, Z. Zheng, K. Qian, W. Huang, Quantitative investigation in the influence of oxalic impurities on photoluminescence properties of porous AAOs. Mater. Chem. Phys. 129, 1247–1251 (2011)Google Scholar
  156. 156.
    J.H. Wu, X.L. Wu, N. Tang, X.M. Bao, Strong ultraviolet and violet photoluminescence form Si-based anodic porous alumina films. Appl. Phys. A-Mater. 72, 735–737 (2001)Google Scholar
  157. 157.
    A. Santos, G. Macias, J. Ferre-Borrull, J. Pallares, J.F. Marsal, Photoluminescent enzymatic sensor based on nanoporous anodic alumina. ASC Appl. Mater. Interfaces 4, 3584–3588 (2012)Google Scholar
  158. 158.
    C.-L. Feng, Z. Zhong, M. Steinhart, A.-M. Caminade, J.-P. Majoral, W. Knoll, Graded-bangap quantum-dot-modified nanotubes: a sensitive biosensor for enhnanced detection of DNA hybridization. Adv. Mater. 19, 1933–1936 (2007)Google Scholar
  159. 159.
    A. Santos, T. Kumeria, D. Losic, Optically optimized photoluminescent and interferometric biosensors base on nanoporous anodic alumina: a comparison. Anal. Chem. 85, 7904–7911 (2013)Google Scholar
  160. 160.
    S.-J. Yuan, Q.-S. Li, Z.-F. Pan, Y.-F. Dong, Q.-T. Wang, H.-H. Ji, Photoluminescence spectra of organic dyes embedded in porous alumina. Chin. J. Semicond. 22, 1406–1410 (2001)Google Scholar
  161. 161.
    X. Wu, S. Xiong, J. Guo, L. Wang, C. Hua, Y. Hou, P.K. Chu, Ultrathin amorphous alumina nanoparticles with quantum-confined oxygen-vacancy-induced blue photoluminescence as fluorescent biological labels. J. Phys. Chem. C 116, 2356–2362 (2012)Google Scholar
  162. 162.
    Y. Cao, J.O. Schenk, M.A. Fiddy, Third order nonlinear effect near a degenerate band edge. Optic. Photo. Lett. 1, 1–7 (2008)Google Scholar
  163. 163.
    M.E. Calvo, S. Colodrero, N. Hidalgo, G. Lozano, C. Lopez-Lopez, O. Sanchez-Sobrado, H. Miguez, Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications. Energ. Environ. Sci. 4, 4800–4812 (2011)Google Scholar
  164. 164.
    M.J.A. De Dood, E. Snoeks, A. Moroz, A. Polman, Design and optimization of 2D photonic crystal waveguides based on silicon. Opt. Quant. Electron. 34, 145–159 (2002)Google Scholar
  165. 165.
    J. Choi, Y. Luo, R.B. Wehrspohn, R. Hillebrand, J. Schilling, U. Gösele, Perfect two-dimensional porous alumina photoni crystals with duplex oxide layer. J. Appl. Phys. 94, 4757–4762 (2003)Google Scholar
  166. 166.
    A. Sato, Y. Pennec, T. Yanagishita, H. Masuda, W. Knoll, B. Djafari-Rouhani, G. Fytas, Cavity-type hypersonic phononic crystals. New J. Chem. 14(113032), 1–13 (2012)Google Scholar
  167. 167.
    J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals (Princeton University Press, Molding the Flow of Light, 2008)Google Scholar
  168. 168.
    T. Maka, D.N. Chigrin, S.G. Romanov, C.M. Sotomayor Torres, Three dimensional photonic crystals in the visible regime. Prog. Electromagn. Res. 41, 307–335 (2003)Google Scholar
  169. 169.
    R.B. Wehrspohn, J. Schilling, Electrochemically prepared pore arrays for photonic-crystal applications. MRS Bull. 26, 623–626 (2001)Google Scholar
  170. 170.
    H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, T. Tamamura, Photonic crystal using anodic porous alumina. J. Appl. Phys. 38, L1403–L1405 (1999)Google Scholar
  171. 171.
    H. Masuda, M. Ohaya, K. Nishio, H. Asoh, M. Nakao, M. Nohtomi, A. Yakoo, T. Tamamura, Electrochemically prepared pore arrays for photonic-crystal applications. Jpn. J. Appl. Phys. 39, L1039–L1041 (2000)Google Scholar
  172. 172.
    H. Masuda, M. Ohya, H. Asoh, K. Nishio, Photonic band gap in naturally occurring ordered anodic porous alumina. Jpn. J. Appl. Phys. 40, L1217–L1219 (2001)Google Scholar
  173. 173.
    H. Masuda, M. Yamada, F. Matsumoto, S. Yokoyama, S. Mashiko, M. Nakao, K. Nishio, Lasing from two-dimensional photonic crystals using anodic porous alumina. Adv. Mater. 18, 213–216 (2006)Google Scholar
  174. 174.
    J. Choi, K. Schilling, K. Nielsch, R. Hillebrand, M. Reiche, R.B. Wehrspohn, U. Gösele, Large-area porous alumina photonic crystals via imprint method. Mat. Res. Soc. Symp. Proc. 722, 2.1–2.6 (2002)Google Scholar
  175. 175.
    H. Masuda, T. Kondo, K. Nishio, Functional optical devices using highly ordered hole array architectures of anodic porous alumina. Proc. SPIE 8204, 820414 (2011)Google Scholar
  176. 176.
    I. Mikulskas, S. Juodkazis, R. Tomasiunas, J.G. Dumas, Aluminum oxide photonic crystals grown by a new hybrid method. Adv. Mater. 13, 1574–1577 (2001)Google Scholar
  177. 177.
    V. Mizeikis, I. Mikulskas, R. Tomasionas, S. Juodkazis, S. Matsuto, H. Misawa, Optical characteristics of two-dimensional photonic crystals in anodic aluminum oxide films. Jpn. J. Appl. Phys. 43, 3643–3647 (2004)Google Scholar
  178. 178.
    R.B. Wehrspohn, A.P. Li, K. Nielsch, F. Müller, W. Erfurth, U. Gösele, Highly ordered alumina films: pore growth and applications. Electrochem. Soc. 271–282 (2000)Google Scholar
  179. 179.
    M. Saito, M. Miyagi, Anisotropic optical loss and birefrigence of anodized alumina film. J. Opt. Soc. Am. A 6, 1895–1900 (1989)Google Scholar
  180. 180.
    G.K. Maliarevich, I.S. Molchan, N.V. Gaponenko, A.V. Mudryi, S.V. Gaponenko, A.A. Lutich, G.E. Thompson, Optoelectronic applications of lantanide-doped sol-gel products and porous anodic alumina. J. Soc. Inf. Display 14, 583–588 (2006)Google Scholar
  181. 181.
    A.A. Lutich, I.S. Molchan, N.V. Gaponenko, S.V. Gaponenko, Scattering, propagation and polarization changes of light in nanoporous anodic alumina. Proc. SPIE 6258, 1–9 (2006)Google Scholar
  182. 182.
    A.A. Lutich, I.S. Molchan, N.V. Gaponenko, Briefringence in porous anodic aluminum oxide. Opt. Spectrosc. 97, 817–821 (2004)Google Scholar
  183. 183.
    A.A. Lutich, M.B. Danailov, S. Volchek, V.A. Yakovtseva, V.A. Sokol, S.V. Gaponenko, Birefringence of nanoporous alumina: dependence on structure parameters. Appl. Phys. B-Lasers Opt. 84, 327–331 (2006)Google Scholar
  184. 184.
    X. Hu, Z.-Y. Ling, S.-S. Chen, X.-X. He, Influence of light scattering on transmission spectra of photonic crystals of anodized alumina. Chinese Phys. Lett. 25, 3284–3287 (2008)Google Scholar
  185. 185.
    G.L. Shang, G.T. Fei, Y. Zhang, P. Yan, S.H. Xu, L.D. Zhang, Preparation of narrow photonic bandgaps located in the near infrared region and their applications in ethanol gas sensing. J. Mater. Chem. C 1, 5285–5291 (2013)Google Scholar
  186. 186.
    G.L. Shang, G.T. Fei, Y. Zhang, P. Yan, S.H. Xu, H.M. Ouyang, L.D. Zhang, Fano resonance in anodic aluminium oxide based photonic crystals. Sci. Rep. 4, 1–6 (2014)Google Scholar
  187. 187.
    L. Pavesi, Porous silicon dielectric multilayers and microcavities. Riv. Nuovo Cimento 20, 1–76 (1997)Google Scholar
  188. 188.
    D.-L. Guo, L.-X. Fan, F.-H. Wang, S.-Y. Huang, X.-W. Zou, Porous anodic aluminum oxide Bragg stacks as chemical sensors. J. Phys. Chem. C 112, 17952–17956 (2006)Google Scholar
  189. 189.
    M. Francon, Optical Interferometry (Academic Press, New York ,1966), p. 178Google Scholar
  190. 190.
    J. Hawkes, I. Latimer, Lasers: Theory and Practice (Prentice-Hall , Lebanon, 1995), p. 222Google Scholar
  191. 191.
    T. Kumeria, A. Santos, D. Losic, Nanoporous anodic alumina platforms: engineered surface chemistry and structure for optical sensing applications. Sensors 14, 1187–11918 (2014)Google Scholar
  192. 192.
    K. Malek, A. Brzózka, A. Rygula, G.D. Sulka, SERS imaging of silver coated nanostructured Al and Al2O3 substrates. The effect of nanostructure. J. Raman Spectrosc. 45, 281–291 (2014)Google Scholar
  193. 193.
    S.-H. Yeom, O.-G. Kim, B.-H. Kang, K.-J. Kim, H. Yuan, D.-H. Kwon, H.-R. Kim, S.-W. Kang, Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference. Opt. Express 19, 22882–22891 (2011)Google Scholar
  194. 194.
    A. Makhal, S. Sarkar, S.K. Pal, H. Yan, D. Wulferding, F. Cetin, P. Lemmens, Ultrafast excited state deactivation of doped porous anodic alumina membranes. Nanotechnology 23, 1–8 (2012)Google Scholar
  195. 195.
    R.-L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X.-W. Qi, L.-T. Li, Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane. J. Phys. Chem. B 108, 16713–16716 (2004)Google Scholar
  196. 196.
    Z.-K. Zhou, X.-R. Su, X.-N. Peng, L. Zhou, Sublinear and superlinear photoluminescence from Nd doped anodic aluminum oxide templates loaded with Ag nanowires. Opt. Express 16, 18028–18033 (2008)Google Scholar
  197. 197.
    J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, X. Zhang, Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930 (2008)Google Scholar
  198. 198.
    P.R. Evans, R. Kullock, W.R. Hendren, R. Atkinson, R.J. Pollard, L.M. Eng, Optical transmission properties and electric field distribution of interacting 2D silver nanorod arrays. Adv. Funct. Mater. 18, 1075–1079 (2008)Google Scholar
  199. 199.
    P.R. Evans, W.R. Hendren, R. Atkinson, R.J. Pollard, Optical transmission measurements of silver, silver-gold alloy and silver-gold segmented nanorods in thin film alumina. Nanotechnology 19, 1–8 (2008)Google Scholar
  200. 200.
    L. Menon, W.T. Lu, A.L. Friedman, S.P. Bennett, D. Heiman, S. Sridhar, Negative index metamaterials based on metal-dielectric nanocomposites for imaging applications. Appl. Phys. Lett. 93(123117), 1–3 (2008)Google Scholar
  201. 201.
    X. Ao, S. He, Negative refraction of left-handed behaviour in porous alumina with infiltrated silver at an optical wavelength. Appl. Phys. Lett. 87(101112), 1–3 (2005)Google Scholar
  202. 202.
    A. Yasui, M. Iwasaki, T. Kawahara, H. Tada, S. Ito, Color properties of gold-silver alternate nanowires electrochemically grown in the pores of aluminum anodic oxidation film. J. Colloid Interf. Sci. 293, 443–448 (2006)Google Scholar
  203. 203.
    H. Yan, P. Lemmens, D. Wulferding, J. Shi, K.D. Becker, C. Lin, A. Lak, M. Schilling, Tailoring defect structure and optical absorption of porous anodic aluminium oxide membranes. Mater. Chem. Phys. 135, 206–211 (2012)Google Scholar
  204. 204.
    M. Es-Souni, S. Habouti, Ordered nanomaterial thin films via supported anodized alumina templates. Front. Mater. 1, 1–9 (2014)Google Scholar
  205. 205.
    A.V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G.A. Wurtz, R. Atkinson, R. Pollard, V.A. Podolskiy, A.V. Zayats, Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867–871 (2009)Google Scholar
  206. 206.
    R. Atkinson, W.R. Hendren, G.A. Wurtz, W. Dickson, A.V. Zayats, P. Evans, R.J. Pollard, Anisotropic optical properties of arrays of gold nanorods embedded in alumina. Phys. Rev. B 73(235402), 1–8 (2006)Google Scholar
  207. 207.
    P. Evans, W.R. Hendren, R. Atkinson, G.A. Wurtz, W. Dickson, A.V. Zayats, R.J. Pollard, Growth and properties of gold and nickel nanorods in thin film aumina. Nanotechnology 17, 5746–5753 (2006)Google Scholar
  208. 208.
    Q. Xu, W.-J. Ye, S.-Z. Feng, H.-Y. Sun, Synthesis and properties of iridescent Co-containing anodic aluminum oxide films. Dyes Pigments 111, 185–189 (2014)Google Scholar
  209. 209.
    H.J. Tang, F.Q. Wu, H.L. Wang, Y.H. Wei, Q.S. Li, Microstructure and optical properties of Cu/Al2O3 nanoarray composite structure. J. Appl. Phys. 100(064316), 1–4 (2006)Google Scholar
  210. 210.
    J.-J. Zhang, X. Hou, L.-H. Liu, H.-Y. Sun, Optical and magnetic properties of PAA@Fe nanocomposite films. AIP Adv. 3, 072116, 1–6 (2013)Google Scholar
  211. 211.
    E. Wäckelgård, A study of the optical properties of nickel-pigmented anodic alumina in the infrared region. J. Phys.: Condens. Matter 8, 5125–5138 (1996)Google Scholar
  212. 212.
    L. Arurault, G. Zamora, V. Vilar, P. Winterton, R. Bes, Electrical behaviour, characteristics and properties of anodic aluminium oxide films coloured by nickel electrodeposition. J. Mater. Sci. 45, 2611–2618 (2010)Google Scholar
  213. 213.
    R. Akolkar, Y.-M. Wang, H.-H. Kuo, Kinetics of the electrolytic coloring process on anodized aluminum. J. Appl. Electrochem. 37, 291–296 (2007)Google Scholar
  214. 214.
    C. Liang, K. Terabe, T. Tsuruoka, M. Osada, T. Hasegawa, M. Aono, AgI/Ag heterojunction nanowires: facile electrochemical synthesis, photoluminescence, and enhanced ionic conductivity. Adv. Funct. Mater. 17, 1466–1472 (2007)Google Scholar
  215. 215.
    E. Hutter, J.H. Fendler, Exploitation of localized plasmon resonance. Adv. Mater. 16, 1685–1706 (2004)Google Scholar
  216. 216.
    S.K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4749–4862 (2007)Google Scholar
  217. 217.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)Google Scholar
  218. 218.
    R.-L. Zong, J. Zhou, B. Li, M. Fu, S.-K. Shi, L.-T. Li, Optical properties of transparent copper nanorod and nanowire arrays embedded in anodic aumina oxide. J. Chem. Phys. 123(094710), 1–5 (2005)Google Scholar
  219. 219.
    W.T. Lu, S. Sridhar, Superlens imaging theory for anisotropic nanostructured metamaterials with broadband all-angle negative refraction. Phys. Rev. B 77(233101), 1–4 (2008)Google Scholar
  220. 220.
    X. Hu, C.T. Chan, Photonic crystals with silver nanowires as a near-infrared superlens. Appl. Phys. Lett. 85, 1520–1522 (2004)Google Scholar
  221. 221.
    X. Zhang, Absolute negative, refraction and imaging of unpolarized electromagnetic waves by two-dimensional photonic crystals. Phys. Rev. B 70(205102), 1–6 (2004)Google Scholar
  222. 222.
    O. Takayama, M. Cada, Two-dimensional metallo-dielectric photonic crystals embedded in anodic porous alumina for optical wavelengths. Appl. Phys. Lett. 85, 1311–1313 (2004)Google Scholar
  223. 223.
    D. Pullini, P. Repetto, S. Bernard, L. Doskolovich, P. Perlo, Rigorous calculations and fabrication by self-assembly techniques of 2D subwavelength structures of gold for photonic applications. Appl. Optics 44, 5127–5130 (2005)Google Scholar
  224. 224.
    M. Saito, M. Miyagi, Micropolarizer using anodized alumina with implanted metallic columns: theoretical analysis. Appl. Optics 28, 3529–3533 (1989)Google Scholar
  225. 225.
    J. Zhang, Y. Yan, X. Co, L. Zhang, Microarrays of silver nanowires embedded in anodic alumina membrane templates: size dependence of polarization characteristics. Appl. Optics 45, 297–304 (2006)Google Scholar
  226. 226.
    Y.T. Pang, G.W. Meng, Q. Fang, L.D. Zhang, Silver nanowire array infrared polarizers. Nanotechnology 14, 20–24 (2003)Google Scholar
  227. 227.
    H.J. Tang, F.Q. Wu, S. Zhang, Optical properties of Co/Al2O3 nano-array composite structure. Appl. Phys. A-Mater. 85, 29–32 (2006)Google Scholar
  228. 228.
    Y.T. Pang, G.W. Meng, Y. Zhang, Q. Fang, L.D. Zhang, Copper nanowire arrays for infrared polarizer. Appl. Phys. A-Mater. 76, 533–536 (2003)Google Scholar
  229. 229.
    M. Saito, M. Kirihara, T. Taniguchi, M. Miyagi, Micropolarizer made of the anodized alumina film. Appl. Phys. Lett. 55, 607–609 (1989)Google Scholar
  230. 230.
    Y.-T. Pang, G.-W. Meng, W.-J. Shan, Q. Fang, L.-D. Zhang, Micropolarizer of ordered Ni nanowire arrays embedded in porous anodic alumina membrane. Chinese Phys. Lett. 30, 144–147 (2003)Google Scholar
  231. 231.
    Y.-T. Pang, G.-W. Meng, L.-D. Zhang, Y. Qin, X.-Y. Gao, A.-W. Zhao, Q. Fang, Arrays of ordered Pb nanowires and their optical properties for laminated polarizers. Adv. Funct. Mater. 12, 719–722 (2002)Google Scholar
  232. 232.
    Y. Zhao, D. Yang, C. Zhou, Q. Yang, D. Que, Photoluminescence properties of the composite of porous alumina and poly(2,5-dibutoxy-1,4 phenylenevinylene). J. Lumin. 105, 57–60 (2003)Google Scholar
  233. 233.
    D. Qi, K. Kwong, K. Rademacher, M.O. Wolf, J.F. Young, Optical emission of conjugated polymers adsorbed to nanoporous alumina. Nano Lett. 3, 1265–1268 (2003)Google Scholar
  234. 234.
    F. Kong, X.L. Wu, G.S. Huang, Y.M. Yang, R.K. Yuan, C.Z. Yang, P.K. Chu, G.C. Siu, Optical emission from Nano-poly[2-methoxy-5-(2-ethyl-hexyloxy)-p-phenylene vinylene] arrays. J. Appl. Phys. 98(074304), 1–4 (2005)Google Scholar
  235. 235.
    F. Kong, G.S. Huang, Y.M. Yang, C.Z. Yang, X.M. Bao, R.K. Yuan, Conformation and luminescence characteristics of nano-poly[2-metoxy-5-(20-ethyl-hexyloxy)-p-phenylene vinylene] in two-dimensional arrays. J. Polym. Sci. Part B: Polym. Phys. 44, 3037–3041 (2006)Google Scholar
  236. 236.
    F. Kong, Y. Yang, X. Zhang, B. Lin, Z. Qi, T. Qiu, Effect of absorption to nanopore on optical properties of conjugated polymers in porous anode alumina. J. Appl. Phys. 109(044309), 1–5 (2011)Google Scholar
  237. 237.
    T.P. Nguyen, S.H. Yang, P. Le Rendu, H. Khan, Optical properties of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-phenylene vinylene) deposited on porous alumina substrates. Compos. Part A-Appl. Sci. Manuf. 36, 515–519 (2005)Google Scholar
  238. 238.
    X. Liu, F. Xu, Z. Li, J. Zhu, W. Zhang, Synthesis and optical properties of Poly[3-(2-methoxyphenyl)thiophene] nanowires confined in porous anodic alumina membrane. Opt. Mater. 30, 1861–1866 (2008)Google Scholar
  239. 239.
    K.M. Coakley, B.S. Srinivasan, J.M. Ziebarth, C. Goh, Y. Liu, M.D. McGehee, Enhanced hole mobility in regioregular polythiophene infiltrated in straight nanopores. Adv. Funct. Mater. 15, 1927–1932 (2005)Google Scholar
  240. 240.
    J. Martin, M. Campoy-Quiles, A. Nogales, M. Garriga, M.I. Alonso, A.R. Goni, M. Martin-Gonzales, Poly(3-hexylthiophene) nanowires in porous alumina: internal structure under confinement. Soft Matter 10, 3335–3346 (2014)Google Scholar
  241. 241.
    H.-W. Shin, E.-J. Shin, S.Y. Cho, S.-L. Oh, Y.-R. Kim, Enhanced energy transfer within pvk/alq3 polymer nanowires induced by the interface effect of nanochannels in porous alumina membrane. J. Phys. Chem. C 111, 15391–15396 (2007)Google Scholar
  242. 242.
    T.Q. Nguyen, J. Wu, V. Doan, B.J. Schwartz, S.H. Tolbert, Control of energy transfer in oriented conjugated polymer-mesoporous silica composites. Science 288, 652–656 (2000)Google Scholar
  243. 243.
    S. Moynihan, D. Iacopino, D. O’Carroll, P. Lovera, G. Redmond, Template synthesis of highly oriented polyfluorene nanotube arrays. Chem. Mater. 20, 996–1003 (2008)Google Scholar
  244. 244.
    C.-H. Huang, H.-Y. Lin, S. Chen, C.-Y. Liu, H.-C. Chui, Y. Tzeng, Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors. Opt. Express 19, 11441–11450 (2011)Google Scholar
  245. 245.
    C.-H. Huang, H.-Y. Lin, Y. Tzeng, C.-H. Fan, C. Lu, C.-Y. Li, C.-W. Huang, N.-K. Chen, H.-C. Chui, Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles. Sensor. Actuat. A-Phys.180, 49–54 (2012)Google Scholar
  246. 246.
    N. Ji, W. Ruan, C. Wang, Z. Lu, B. Zhao, Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced raman scattering and thin film interference. Langmuir 25, 11869–11873 (2009)Google Scholar
  247. 247.
    Q. Hu, H.H. Lee, D.-Y. Jeong, Y.-S. Kim, K.-B. Kim, J. Xu, T.-S. Yoon, Reflectivity spectra and colors of porous anodic aluminum oxide containing silver nanoparticles by plasmonic absorption. J. Nanosci. Nanotechnol. 12, 1979–1983 (2012)Google Scholar
  248. 248.
    G. Giallongo, C. Durante, R. Pilot, D. Garoli, R. Bozio, F. Romanto, A. Gennaro, G.A. Rizzi, G. Granozzi, Growth and optical properties of silver nanostructures obtained on connected anodic aluminum oxide templates. Nanotechnology 23(325604), 1–10 (2012)Google Scholar
  249. 249.
    H.-H. Wang, C.-Y. Liu, S.-B. Wu, N.-W. Liu, C.-Y. Peng, T.H. Chan, C.-F. Hsu, J.-K. Wang, Y.L. Wang, Highly raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv. Mater. 18, 491–495 (2006)Google Scholar
  250. 250.
    T. Kondo, K. Nishio, H. Masuda, Mutilayered three-dimensional structures of Ag nanoparticles in anodic porous alumina. Jpn. J. Appl. Phys. 49(025002), 1–3 (2010)Google Scholar
  251. 251.
    S. Ye, Y. Hou, R. Zhu, S. Gu, J. Wang, Z. Zhang, S. Shi, J. Du, Synthesis and photoluminescence enhancement of silver nanoparticles decorated porous anodic alumina. J. Mater. Sci. Technol. 27, 165–169 (2011)Google Scholar
  252. 252.
    C.A. Foss, L.H. Gabor, J.A. Stockert, C.R. Matrin, Optical properties of composite membranes containing arrays of nanoscopic gold cylinders. J. Phys. Chem. 96, 7497–7499 (1992)Google Scholar
  253. 253.
    C.A. Foss, G.L. Hornyak, J.A. Stockert, C.R. Martin, Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape. J. Phys. Chem. 98, 2963–2971 (1994)Google Scholar
  254. 254.
    G.L. Hornyak, C.J. Patrissi, R. Martin, Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: the nonscattering Maxwell-Garnett limit. J. Phys. Chem. B 101, 1548–1555 (1997)Google Scholar
  255. 255.
    J.C. Hulteen, C.J. Patrissi, D.L. Miner, E.R. Crosthwait, E.B. Oberhauser, C.R. Martin, Changes in the shape and optical properties of gold nanoparticles contained within alumina membranes due to low-temperature annealing. J. Phys. Chem. B 101, 7727–7731 (1997)Google Scholar
  256. 256.
    C.K. Preston, M. Moskovits, Optical characterization of anodic aluminum oxide films containing electrochemically deposited metal particles. 1. Gold in phosporic acid anodic aluminum oxide films. J. Phys. Chem. 97, 8495–8503 (1993)Google Scholar
  257. 257.
    T. Sawitowski, Y. Miquel, A. Heilmann, G. Schmid, Optical properties of quasi one-dimensional chains of gold nanoparticles. Adv. Funct. Mater. 11, 435–440 (2001)Google Scholar
  258. 258.
    V.G. Stoleru, E. Towe, Plasmon resonant Au nanospheres and nanorods in anodic alumina matrix. Microelectron. Eng. 81, 358–365 (2005)Google Scholar
  259. 259.
    M.L. Sandrock, C.A. Foss, Synthesis and linear optical properties of nanoscopic gold particle pair structures. J. Phys. Chem. 103, 11398–11406 (1999)Google Scholar
  260. 260.
    M.L. Sandrock, M. El-Kouedi, M. Gluodenis, C.A. Foss, Optical properties of nanoparticle pair structures. Mat. Res. Soc. Symp. Proc. 635, C2.1.1–C2.1.10 (2001)Google Scholar
  261. 261.
    S.M. Marinakos, L.C. Brousseau, A. Jones, D.L. Feldheim, Template synthesis of one-dimensional Au, Au-poly(pyrrole), and poly(pyrrole) nanoparticle arrays. Chem. Mater. 10, 1214–1219 (1998)Google Scholar
  262. 262.
    J.-H. Chen, C.-G. Chao, J.-C. Ou, T.-F. Liu, Growth and characteristics of lead sulfide nanocrystals produced by the porous alumina membrane. Surf. Sci. 601, 5142–5147 (2007)Google Scholar
  263. 263.
    Y. Ishikawa, Y. Matsumoto, Electrodeposition of TiO2 photocatalyst into porous alumite prepared in phosphoric acid. Solid State Ionics 151, 213–218 (2002)Google Scholar
  264. 264.
    G. Shi, C.M. Mo, W.L. Cai, L.D. Zhang, Photoluminescence of ZnO nanoparticles in alumina membrane with ordered pore arrays. Solid State Commun. 115, 253–256 (2000)Google Scholar
  265. 265.
    T. Gao, G. Meng, Y. Tian, Y. Sun, X. Liu, L. Zhang, Photoluminescence of ZnO nanoparticles loaded into porous anodic alumina hosts. J. Phys.: Condens. Matter 14, 12651–12656 (2002)Google Scholar
  266. 266.
    G. Schmid, Materials in nanoporous alumina. J. Mater. Chem. 12, 1231–1238 (2002)Google Scholar
  267. 267.
    J.C. Maxwell Garnett, Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. London A 203, 385–420 (1904)Google Scholar
  268. 268.
    J.C. Maxwell Garnett, Colours in metal glasses, in metallic films, and in metallic solutions. II. Philos. Trans. R. Soc. London A 205, 237–288 (1906)Google Scholar
  269. 269.
    R. Kudrawiec, A. Podhorecki, N. Mirowska, J. Misiewicz, I. Molchan, N.V. Gaponenko, A.A. Lutich, S.V. Gaponenko, Photoluminescence investigation of Europium-doped alumina, titania and indium sol–gel-derived films in porous anodic alumina. Mater. Sci. Eng. B-Adv. 105, 53–56 (2003)Google Scholar
  270. 270.
    I.S. Molchan, N.V. Gaponenko, R. Kudrawiec, J. Misiewicz, L. Bryja, G.E. Thompson, P. Skeldon, Visible luminescence from europium-doped alumina sol-derived films confined in porous anodic alumina. J. Alloy. Compd. 341, 251–254 (2002)Google Scholar
  271. 271.
    N.V. Gaponenko, I.S. Molchan, O.V. Sergeev, G.E. Thompson, A. Pales, P. Skeldon, R. Kudrawiec, L. Bryja, J. Misiewicz, J.C. Pivin, B. Hamilton, E.A. Stepanova, Enhancment of green terbium-related photoluminescence from higly doped microporous alumina xerogels in mesoporous anodic alumina. J. Electrochem. Soc. 149, H49–H52 (2002)Google Scholar
  272. 272.
    J.C. Pivin, N.V. Gaponenko, I. Molchan, R. Kudrawiec, J. Misiewicz, L. Bryja, G.E. Thompson, P. Skeldon, Comparsion of terbium photoluminescence from ion implanted and sol–gel-derived films. J. Alloy. Compd. 341, 272–274 (2002)Google Scholar
  273. 273.
    A. Podhorodecki, M. Banski, J. Misiewicz, J. Serafińczuk, N.V. Gaponenko, Influence of annealing on excitation of terbium uminescence in YAlO3 films deposited onto porous anodic alumina. J. Electrochem. Soc. 157, H628–H632 (2010)Google Scholar
  274. 274.
    N.V. Gaponenko, D.M. Unuchak, A.V. Mudryi, G.K. Malyarevich, O.B. Gusev, M.V. Stepikhova, L.V. Krasilnikova, A.P. Stupak, S.M. Kleshcheva, M.I. Samoilovich, M.Y. Tsvetkov, Modification of erbium photoluminescence excitation spectra for the emission wavelength 1.54 μm in mesoscopic structures. J. Lumin. 121, 217–221 (2006)Google Scholar
  275. 275.
    A. Podhorodecki, R. Kudrawiec, J. Misiewicz, N.V. Gaponenko, D.A. Tsyrkunov, 1.54 μm photoluminescence from Er-doped sol-gel derived In2O3 films embedded in porous anodic alumina. Opt. Mater. 28, 685–687 (2006)Google Scholar
  276. 276.
    N.V. Gaponenko, O.V. Sergeev, V.E. Borisenko, J.C. Pivin, P. Skeldon, G.E. Thompson, B. Hamolton, J. Misiewicz, L. Bryja, R. Kudrawiec, A.P. Stupak, E.A. Stepanova, Terbium photoluminescence in polysiloxane films. Mater. Sci. Eng. B-Adv. 81, 191–193 (2001)Google Scholar
  277. 277.
    S.A. Klimin, E.P. Chukalina, M.N. Popova, E. Antic-Fidancev, P. Aschehoug, N.V. Gaponenko, L.S. Molchan, D.A. Tsyrkunov, Absorption and emission spectra of erbium-doped titania xerogels confined on porous anodic alumina. Phys. Lett. A 323, 159–163 (2004)Google Scholar
  278. 278.
    N.V. Gaponenko, I.S. Molchan, D.A. Tsyrkunov, G.K. Maliarevich, M. Aegerter, J. Puetz, N. Al.-Dahoudi, J. Misiewicz, R. Kudrawiec, V. Lambertini, N. Li Pira, P. Repetto, Optical and structural properties of sol gel derived materials embedded in porous anodic alumina. Microelectron. Eng. 81, 255–261 (2005)Google Scholar
  279. 279.
    M.T. Tsvetkov, S.M. Kleshcheva, M.I. Samoilovich, N.V. Gaponenko, A.N. Shushunov, Erbium photoluminescence in opal matrix and porous anodic alumina nanocomposites. Microelectron. Eng. 81, 273–280 (2005)Google Scholar
  280. 280.
    N.V. Gaponenko, G.K. Malyarevich, D.A. Tsyrkunou, E.A. Stepanova, A.V. Mudrui, O.B. Gusev, E.I. Terukov, M.V. Stepikhova, L.V. Krasilnikova, Y.N. Drozdov, Optical properties of erbium-doped xerogels embedded in porous anodic alumina. Opt. Mater. 28, 688–692 (2006)Google Scholar
  281. 281.
    M.I. Samoilovich, M.Y. Tsvetkov, S.M. Kleshcheva, A.V. Guryanov, Y.I. Chigirinskii, N.V. Gaponenko, L.I. Ivleva, A.F. Belyanin, Erbium luminescence in 3D- and 2D-mesoporous matrices. Proc. SPIE 5450, 508–516 (2004)Google Scholar
  282. 282.
    N.V. Gaponenko, O.V. Sergeev, E.A. Stepanova, V.M. Parkun, A.V. Mudryi, H. Gnaser, J. Misiewicz, R. Heiderhoff, L.J. Balk, G.E. Thompson, Optical and structural characterization of erbium-doped TiO2 xerogels films processed on porous anodic alumina. J. Electrochem. Soc. 148, H13–H16 (2001)Google Scholar
  283. 283.
    N.V. Gaponenko, I.S. Molchan, A.A. Lutich, S.V. Gaponenko, Enhanced luminescence of europium in porous anodic alumina films. Solid State Phenom. 97–98, 251–258 (2004)Google Scholar
  284. 284.
    I.S. Molchan, N.V. Gaponenko, R. Kudrawiec, J. Misiewicz, G.E. Thompson, Influence of porous anodic alumina matrix upon europium luminescence from sol–gel-derived films. Mater. Sci. Eng. B-Adv. 105, 37–40 (2003)Google Scholar
  285. 285.
    R. Kudrawiec, J. Misiewicz, L. Bryja, I.S. Molchan, N.V. Gaponenko, Photoluminescence investigation of porous anodic alumina with spin–on europium-containing titania sol-gel films. J. Alloy. Compd. 341, 211–213 (2002)Google Scholar
  286. 286.
    S. Molchan, E.A. Stepanova, G.E. Thompson, P. Skelton, N.V. Gaponenko, Europium photolumiescence in titania xerogel on porous anodic aluminum. Proc. SPIE 4511, 58–60 (2001)Google Scholar
  287. 287.
    N.V. Gaponenko, I.S. Molchan, G.E. Thompson, P. Skeldon, A. Pakes, R. Kudrawiec, L. Bryja, J. Misiewicz, Photoluminescence of Eu-doped titania xerogel spin-on deposited on porous anodic alumina. Sensor. Actuat. A-Phys. 99, 71–73 (2002)Google Scholar
  288. 288.
    I.S. Molchan, N.V. Gaponenko, R. Kudrawiec, J. Misiewicz, G.E. Thompson, P. Sheldon, Luminescence from sol-gel-derived europium-doped films confined in mesoporous anodic alumina. J. Electrochem. Soc. 151, H16–H20 (2004)Google Scholar
  289. 289.
    A. Peng, E. Xie, C. Jia, R. Jiang, H. Lin, Photoluminescence properties of TiO2:Eu3+ thin films deposited on different substrates. Mater. Lett. 59, 3866–3869 (2005)Google Scholar
  290. 290.
    N.V. Gaponenko, J.A. Davidson, B. Hamilton, P. Skeldon, G.E. Thompson, X. Zhou, J.C. Pivin, Strongly enhanced Tb luminescence from titania xerogels solids mesoscopocally confined in porous anodic alumina. Appl. Phys. Lett. 76, 1006–1008 (2000)Google Scholar
  291. 291.
    N.V. Gaponenko, Sol-gel-derived films in meso-porous matrices: porous silicon, anodic alumina and artificial opals. Synth. Met. 124, 125–130 (2001)Google Scholar
  292. 292.
    A. Podhorodecki, N.V. Gaponenko, M. Banski, M.V. Rudenko, L.S. Khoroshko, A. Sieradzki, J. Misiewicz, Green emission from barium-strontium titanate matrix introduced into nano-porous anodic alumina. Opt. Mater. 34, 1570–1574 (2012)Google Scholar
  293. 293.
    T. Qiu, W. Zhang, X. Lang, Y. Zhou, T. Cui, P.K. Chu, Controlled assembly of highly raman-enhancing silver nanocap arrays templated by porous anodic alumina membranes. Small 5, 2333–2337 (2009)Google Scholar
  294. 294.
    R.J. Walsh, G. Chumanov, Silver coated porous alumina as a new substrate for surface-enhanced raman scattering. Appl. Spectrosc. 55, 1695–1700 (2001)Google Scholar
  295. 295.
    A.M. Md Jani, D. Losic, N.H. Voelcker, Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications. Prog. Mater. Sci. 58, 636–704 (2013)Google Scholar
  296. 296.
    K. Hotta, A. Yamaguchi, N. Teramae, Properties of a metal clad waveguide sensor based on a nanoporous-metal-oxide/metal multilayer film. Anal. Chem. 82, 6066–6073 (2010)Google Scholar
  297. 297.
    K. Hotta, A. Yamaguchi, N. Teramae, Nanoporous waveguide sensor with optimized nanoarchitectures for highly sensitive label-free biosensing. ACS Nano 6, 1541–1547 (2012)Google Scholar
  298. 298.
    D. Kim, K. Kerman, M. Salto, R.R. Salthulurl, T. Endo, S. Yamamura, Y.-Y. Kwon, E. Tamlya, Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry. Anal. Chem. 79, 1855–1864 (2007)Google Scholar
  299. 299.
    A. Santos, T. Kumeria, D. Losic, Nanoporous anodic aluminum oxide for chemical sensing and biosensors. Trends Anal. Chem. 44, 25–38 (2013)Google Scholar
  300. 300.
    A. Santos, V.S. Balderrama, M. Alba, P. Formentin, J. Ferre-Borrull, J. Pallares, L.F. Marsal, Nanoporous anodic alumina barcodes: toward smart optical biosensing. Adv. Mater. 24, 1050–1054 (2012)Google Scholar
  301. 301.
    S.N. Terekhov, P. Mojzes, S.M. Kachan, N.I. Mukhurov, S.P. Zhvavyi, A.Y. Panarin, I.A. Khodasevich, V.A. Orlovich, A. Thorel, F. Grillon, P.Y. Turpin, A comparative study of surface-enhanced raman scattering from silver-coated anodic aluminum oxide and porous silicon. J. Raman Spectrosc. 42, 12–20 (2011)Google Scholar
  302. 302.
    J. Wang, L. Huang, H. Tong, L. Zhai, L. Yuan, L. Zhao, W. Zhang, D. Shan, A. Hao, X. Feng, Perforated nanocap array: facile fabrication process and efficient surface enhanced raman scattering with fluorescence suppression. Chinese Phys. B 22, 047301-1-047301-5 (2013)Google Scholar
  303. 303.
    Z. Yao, M. Zheng, L. Ma, W. Shen, The fabrication of ordered nanoporous metal films based on high field anodic alumina and their selected transmission enhancement. Nanotechnology 19(465705), 1–7 (2008)Google Scholar
  304. 304.
    G. Macias, L.P. Hernandes Eguia, J. Ferre Borrull, J. Pallares, L.F. Marsal, Gold-coated ordered nanoporous, anodic alumina bilayers for future label–free interferometric biosensors. Appl. Mater. Interfaces 5, 8093–8098 (2013)Google Scholar
  305. 305.
    T. Kumeria, L. Parkinson, D. Losic, A nanoporous interferometric micro-sensor for biomedical detection of volatile sulphur compounds. Nanoscale Res. Lett. 6, 1–7 (2011)Google Scholar
  306. 306.
    T. Kumeria, M.D. Kurkuri, K.R. Diener, L. Parkinson, D. Losic, Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells. Biosens. Bioelectron. 35, 167–173 (2012)Google Scholar
  307. 307.
    X. Wang, D. Zhang, H. Zhang, Y. Ma, J.Z. Jiang, Tuning color by pore depth of metal-coated porous alumina. Nanotechnology 22(305306), 1–6 (2011)Google Scholar
  308. 308.
    J. Li, Z. Zhu, Y. Hu, J. Zheng, J. Chu, W. Huang, Numerical and experimental study of the structural color by widening the pore size of nanoporous anodic alumina. J. Nanomater. 819432, 1–10 (2014)Google Scholar
  309. 309.
    Y. Wada, T. Yanagishita, H. Masuda, Ordered porous alumina geometries and surface metals for surface-assisted laser desorption/ionization of biomolecules: possible mechanistic implications of metal surface melting. Anal. Chem. 79, 9122–9127 (2007)Google Scholar
  310. 310.
    H. Hu, D. He, The properties of Si1-xGex nanodot arrays prepared by plasma-enhanced CVD on porous alumina templates. Chem. Vapor. Depos. 12, 751–754 (2006)Google Scholar
  311. 311.
    S. Kinoshita, S. Yoshioka, Structural colors in nature: the role of regularity and irregularity in the structure. Chem. Phys. Chem. 6, 1442–1459 (2005)Google Scholar
  312. 312.
    N.V. Gaponenko, Y.V. Hluzd, G.K. Maliarevich, I.S. Molchan, G.E. Thompson, S. Dabboussi, H. Elhouichet, S.Y. Prislopski, A.A. Lutich, Room-temperature photoluminescence from porous anodic alumina films with embedded terbium and europium species. Mater. Lett. 63, 621–624 (2009)Google Scholar
  313. 313.
    S. Dabboussi, H. Elhouichet, C. Bouzidi, G.K. Maliarevich, N.V. Gaponenko, M. Oueslati, Excitation and emission processes of Tb3+ in porous anodic alumina. Appl. Surf. Sci. 255, 4255–4258 (2009)Google Scholar
  314. 314.
    S.P. Mondal, A. Dhar, S.K. Ray, Optical properties of CdS nanowires prepared by DC electrochemical deposition in porous alumina template. Mater. Sci. Semicond. Process. 10, 185–193 (2007)Google Scholar
  315. 315.
    Y.L. Shi, J. Wang, H.L. Li, Photoluminescence effect of ru dye on alumina membranes with ordered pore arrays. Appl. Phys. A-Mater. 75, 423–426 (2002)Google Scholar
  316. 316.
    J.W. Gregory, K. Asai, M. Kameda, T. Liu, J.P. Sullivan, A review of pressure-sensitive paint for high-speed and unsteady aerodynamics. Proceed. Inst. Mech. Eng. Part G: J. Aerospace Eng. 222, 249–290 (2008)Google Scholar
  317. 317.
    Y.-Q. Cheng, Y.-Z. Yang, C.-R. Niu, D.-Y. Miao, X.-G. Chen, Z.-D. Hu, Photoluminescence characteristics of several fluorescent molecules on nanometer porous alumina film. Acta Chim. Sinica 62, 183–187 (2004)Google Scholar
  318. 318.
    Y. Yang, H.-Y. Li, H.-L. Chen, X.-M. Bao, Luminescence study of fluorescent dye impregnated into si-based nanoporous alumina. Chem. J. Chinese Univ. 23, 768–771 (2002)Google Scholar
  319. 319.
    C. Xu, C. Xu, Q. Xue, L. Ba, B. Zhao, N. Gu, Y. Cui, Spectral behavior of 8-hydroxyquinoline aluminum in nanometer-sized holes of porous alumina. Chinese Sci. Bull. 46, 1839–1841 (2001)Google Scholar
  320. 320.
    Y.-F. Dong, Q.-S. Li, Photoluminescent sectra of 8-hydroxyquinoline aluminum embedded in porous alumina. Acta Phys.Sinica 51, 1645–1648 (2002)Google Scholar
  321. 321.
    A. Moadhen, H. Elhouichet, L. Nosova, M. Ouslati, Rhodamine B absorbed by anodic porous alumina: stokes and anti-stokes luminescence study. J. Lumin. 126, 789–794 (2007)Google Scholar
  322. 322.
    I. Miura, Y. Okada, S. Kudoh, M. Nakata, Organic electroluminescence in porous alumina. Jpn. J. Appl. Phys. 43, 7552–7553 (2004)Google Scholar
  323. 323.
    H. Elhouichet, N. Harima, H. Koyama, N.V. Gaponenko, Energy transfer in porous anodic alumina/rhodamine 110 nanocomposites. J. Lumin. 132, 2232–2234 (2012)Google Scholar
  324. 324.
    A. Kukhto, E. Kolesnik, A. Mozalev, M. Taoubi, Luminescent properties of organic compounds in nanodimensional aluminium oxide structures. Proc. SPIE 3573, 513–515 (1998)Google Scholar
  325. 325.
    H.J. Peng, Y.L. Ho, X.J. Yu, H.S. Kwok, Enhanced coupling of light from organic light emitting diodes using nanoporous films. J. Appl. Phys. 96, 1649–1654 (2004)Google Scholar
  326. 326.
    S. Wang, H. Luo, Y. Wang, G. Gong, The effect of nanometer size of porous anodic aluminum oxide on adsorption and fluorescence of tetrahydroxyflavanol. Spectrochim. Acta B 59, 1139–1144 (2003)Google Scholar
  327. 327.
    R.-P. Jia, Y. Shen, H.-Q. Luo, X.-G. Chen, Z.-D. Hu, D.-S. Xue, Photoluminescence spectra of human serum albumen and morin embedded in porous alumina membranes with ordered pore arrays. J. Phys.: Condens. Mater. 15, 8271–8279 (2003)Google Scholar
  328. 328.
    R.P. Jia, Y. Shen, H.Q. Luo, X.G. Chen, Z.D. Hu, D.S. Xue, Enhanced photoluminescence properties of morin and trypsin absorbed on porous alumina films with ordered pores array. Solid State Commun. 130, 367–372 (2004)Google Scholar
  329. 329.
    R.P. Jia, Y. Shen, H.Q. Luo, X.G. Chen, Z.D. Hu, D.S. Xue, Photoluminescence behaviors of morin-human immunoglobulin on porous anodized aluminum oxide films. Thin Solid Films 471, 264–269 (2005)Google Scholar
  330. 330.
    R.P. Jia, Y. Shen, H.Q. Luo, X.G. Chen, Z.D. Hu, D.S. Xue, Enhanced photoluminescence properties of morin and trypsin absorbed on porous alumina films with ordered pores array. Solid State Commun. 233, 343–351 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Agnieszka Brzózka
    • 1
  • Anna Brudzisz
    • 1
  • Katarzyna Hnida
    • 2
  • Grzegorz D. Sulka
    • 1
  1. 1.Department of Physical Chemistry and Electrochemistry, Faculty of ChemistryJagiellonian University in KrakowKrakowPoland
  2. 2.AGH University of Science and TechnologyAcademic Centre for Materials and NanotechnologyKrakowPoland

Personalised recommendations