Electrochemically Engineered Nanoporous Materials pp 93-116

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 220) | Cite as

Porous Silicon Biosensors Employing Emerging Capture Probes

  • Katharina Urmann
  • Elena Tenenbaum
  • Johanna-Gabriela Walter
  • Ester Segal
Chapter

Abstract

The application of porous silicon (PSi) for biosensing was first described by Thust et al. in 1996, demonstrating a potentiometric biosensor for the detection of penicillin. However, only in the past decade PSi has established as a promising nanomaterial for label-free biosensing applications. This chapter focuses on the integration of new emerging capture probes with PSi-based biosensing schemes. An overview of natural and synthetic receptors and their advantageous characteristics for the potential application in PSi biosensors technology is presented. We also review and discuss several examples, which successfully combine these new bioreceptors with PSi optical and electrochemical transducers, for label-free biosensing.

References

  1. 1.
    M.J. Sailor, Porous Silicon in Practice (Wiley-VCH, Weinheim, 2011), p. 250Google Scholar
  2. 2.
    A. Jane et al., Porous silicon biosensors on the advance. Trends Biotechnol. 27(4), 230–239 (2009)Google Scholar
  3. 3.
    L.M. Bonanno, E. Segal, Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. Nanomedicine 6(10), 1755–1770 (2011)Google Scholar
  4. 4.
    J. Salonen, V.-P. Lehto, Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem. Eng. J. 137(1), 162–172 (2008)Google Scholar
  5. 5.
    M. Archer, M. Christophersen, P.M. Fauchet, Macroporous silicon electrical sensor for DNA hybridization detection. Biomed. Microdevices 6(3), 203–211 (2004)Google Scholar
  6. 6.
    K.A. Kilian, T. Boecking, J.J. Gooding, The importance of surface chemistry in mesoporous materials: lessons from porous silicon biosensors. Chem. Commun. 6, 630–640 (2009)Google Scholar
  7. 7.
    L.M. Bonanno, L.A. DeLouise, Steric crowding effects on target detection in an affinity biosensor. Langmuir 23(10), 5817–5823 (2007)Google Scholar
  8. 8.
    L.M. Bonanno, L.A. DeLouise, Tunable detection sensitivity of opiates in urine via a label-free porous silicon competitive inhibition immunosensor. Anal. Chem. 82(2), 714–722 (2010)Google Scholar
  9. 9.
    N. Massad-Ivanir et al., Engineering nanostructured porous SiO(2) surfaces for bacteria detection via “direct cell capture”. Anal. Chem. 83(9), 3282–3289 (2011)Google Scholar
  10. 10.
    S. Chan et al., Identification of gram negative bacteria using nanoscale silicon microcavities. J. Am. Chem. Soc. 123(47), 11797–11798 (2001)Google Scholar
  11. 11.
    N. Massad-Ivanir, E. Segal, 12—Porous Silicon for Bacteria Detection, in Porous Silicon for Biomedical Applications, ed. by H.A. Santos (Woodhead Publishing, Finland, 2014), pp. 286–303Google Scholar
  12. 12.
    G. Shtenberg, E. Segal, Porous Silicon Optical Biosensors, in Handbook of Porous Silicon, ed. by L. Canham, (Springer International Publishing, Switzerland, 2014), pp. 1–11Google Scholar
  13. 13.
    C. Pacholski, Photonic crystal sensors based on porous silicon. Sensors 13(4), 4694–4713 (2013)Google Scholar
  14. 14.
    K.P.S. Dancil, D.P. Greiner, M.J. Sailor, A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface. J. Am. Chem. Soc. 121(34), 7925–7930 (1999)Google Scholar
  15. 15.
    A. Janshoff et al., Macroporous p-type silicon Fabry-Perot layers. Fabrication, characterization, and applications in biosensing. J. Am. Chem. Soc. 120(46), 12108–12116 (1998)Google Scholar
  16. 16.
    V.S.-Y. Lin et al., A porous silicon-based optical interferometric biosensor. Science 278(5339), 840–843 (1997)Google Scholar
  17. 17.
    A. Salis et al., Porous Silicon-based Electrochemical Biosensors, in Biosensors—Emerging Materials and Applications, ed. by P.A. Serra.(InTech, Croatia, 2011)Google Scholar
  18. 18.
    D.R. Thévenot et al., Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron. 16(1–2), 121–131 (2001)Google Scholar
  19. 19.
    A.P.F. Turner, Current trends in biosensor research and development. Sens. Actuators 17(3–4), 433–450 (1989)Google Scholar
  20. 20.
    K. Kahn, K.W. Plaxco, Principles of Molecular Recognition, in Recognition Receptors in Biosensors, ed by M. Zourob (Springer, New York, 2011), pp. 3–46Google Scholar
  21. 21.
    M. Zourob, Recognition Receptors in Biosensors (Springer, New York Dordrecht Heidelberg London, 2010)Google Scholar
  22. 22.
    S.A. Piletsky, M.J. Whitcombe (eds.), Designing Receptors for the Next Generation of Biosensors. in Springer Series on Chemical Sensors and Biosensors, ed. by G. Urban. Vol. 12 (Springer, Heidelberg, 2013)Google Scholar
  23. 23.
    S. Tonegawa, Somatic generation of antibody diversity. Nature 302(5909), 575–581 (1983)Google Scholar
  24. 24.
    J.P. Kim et al., Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Anal. Biochem. 381(2), 193–198 (2008)Google Scholar
  25. 25.
    P. Holliger, P.J. Hudson, Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23(9), 1126–1136 (2005)Google Scholar
  26. 26.
    A.C.A. Roque, C.R. Lowe, M.A. Taipa, Antibodies and genetically engineered related molecules: production and purification. Biotechnol. Prog. 20(3), 639–654 (2004)Google Scholar
  27. 27.
    K. Shreder, Synthetic haptens as probes of antibody response and immunorecognition. METHODS: A Companion to Methods in Enzymology 20(3), 372–379 (2000)Google Scholar
  28. 28.
    N.A.E. Hopkins, Antibody engineering for Biosensor Applications, in Recognition Receptors in Biosensors, ed. by M. Zourob (Springer, New York, 2010), pp. 451–529Google Scholar
  29. 29.
    L.C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102(1), 29–000 (1962)Google Scholar
  30. 30.
    H.G. Hundeck et al., Calorimetric biosensor for the detection and determination of enantiomeric excesses in aqueous and organic phases. Biosens. Bioelectron. 8(3–4), 205–208 (1993)Google Scholar
  31. 31.
    B.D. Leca-Bouvier, L.C. Blum, Enzyme for Biosensing Applications, in Recognition Receptors in Biosensors, ed. by M. Zourob (Springer, New York ,2010), pp. 177–220Google Scholar
  32. 32.
    I. Axarli, A. Prigipaki, N.E. Labrou, Engineering the substrate specificity of cytochrome P450CYP102A2 by directed evolution: production of an efficient enzyme for bioconversion of fine chemicals. Biomol. Eng. 22(1–3), 81–88 (2005)Google Scholar
  33. 33.
    M. Ostermeier, Engineering allosteric protein switches by domain insertion. Protein Eng. Des. Sel. 18(8), 359–364 (2005)Google Scholar
  34. 34.
    J.P. Chambers et al., Biosensor recognition elements. Curr. Issues Mol. Biol. 10, 1–12 (2008)Google Scholar
  35. 35.
    R.E.W. Hancock, H.-G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotech. 24(12), 1551–1557 (2006)Google Scholar
  36. 36.
    C.D. Fjell et al., Designing antimicrobial peptides: form follows function. Nat. Rev. Drug. Discov. 11(1), 37–51 (2012)Google Scholar
  37. 37.
    L. Shriver-Lake et al., Antimicrobial Peptides for Detection and Diagnostic Assays, in Designing Receptors for the Next Generation of Biosensors, ed. by S.A. Piletsky, M.J. Whitcombe (Springer, Heidelberg, 2013), pp. 85–104Google Scholar
  38. 38.
    M.S. Mannoor et al., Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc Natl Acad Sci U S A 107(45), 19207–19212 (2010)Google Scholar
  39. 39.
    I.E. Tothill, Peptides as Molecular Receptors, in Recognition Receptors in Biosensors, ed. by M. Zourob (Springer, New York, 2010), pp. 249–274Google Scholar
  40. 40.
    S. Rotem et al., Analogous oligo-acyl-lysines with distinct antibacterial mechanisms. FASEB J. 22(8), 2652–2661 (2008)Google Scholar
  41. 41.
    A.P.F. Turner, Biochemistry—biosensors sense and sensitivity. Science 290(5495), 1315–1317 (2000)Google Scholar
  42. 42.
    J.C. Liao et al., Development of an advanced electrochemical DNA biosensor for bacterial pathogen detection. J. Mol. Diagn. 9(2), 158–168 (2007)Google Scholar
  43. 43.
    F. Farabullini et al., Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosens. Bioelectron. 22(7), 1544–1549 (2007)Google Scholar
  44. 44.
    Y. Shin, A.P. Perera, M.K. Park, Label-free DNA sensor for detection of bladder cancer biomarkers in urine. Sens. Actuators B-Chem. 178, 200–2006 (2013)Google Scholar
  45. 45.
    F. Stahl, Analysis of genregulation—DNA chip technology. Chem. unserer Zeit 39(3), 188–194 (2005)Google Scholar
  46. 46.
    Y.V. Gerasimova, J. Ballantyne, D.M. Kolpashchikov, Detection of SNP-containing human DNA sequences using a split sensor with a universal molecular beacon reporter. Methods Mol. Biol. 1039, 69–80 (2013)Google Scholar
  47. 47.
    J. Wang, From DNA biosensors to gene chips. Nucleic Acids Res. 28(16), 3011–3016 (2000)Google Scholar
  48. 48.
    F. Eckstein, G. Gish, Phosphorothioates in molecular-biology. Trends Biochem. Sci. 14(3), 97–100 (1989)Google Scholar
  49. 49.
    B. Vester, J. Wengel, LNA (Locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 43(42), 13233–13241 (2004)Google Scholar
  50. 50.
    A. Vainrub, B.M. Pettitt, Coulomb blockage of hybridization in two-dimensional dna arrays. Phys. Rev. E. 66(4) (2002)Google Scholar
  51. 51.
    A.N. Rao, D.W. Grainger, Biophysical properties of nucleic acids at surfaces relevant to microarray performance. Biomater. Sci. 2(4), 436–471 (2014)Google Scholar
  52. 52.
    P.E. Nielsen et al., Sequence selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1498–1500 (1991)Google Scholar
  53. 53.
    E. Mateo-Martí, C.-M. Pradier, A Novel Type of Nucleic Acid-based Biosensors: the Use of PNA Probes, Associated with Surface Science and Electrochemical Detection Techniques in Intelligent and biosensor, ed. by V.S. Somerset (InTech, Croatia, 2010)Google Scholar
  54. 54.
    A.D. Ellington, J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287), 818–822 (1990)Google Scholar
  55. 55.
    D.L. Robertson, G.F. Joyce, Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344(6265), 467–468 (1990)Google Scholar
  56. 56.
    C. Tuerk, L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968), 505–510 (1990)Google Scholar
  57. 57.
    R. Stoltenburg, N. Nikolaus, B. Strehlitz, Capture-selex: selection of dna aptamers for aminoglycoside antibiotics. J. Anal. Methods Chem 415697, 14 (2012)Google Scholar
  58. 58.
    R. Stoltenburg, C. Reinemann, B. Strehlitz, FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal. Bioanal. Chem. 383(1), 83–91 (2005)Google Scholar
  59. 59.
    A. Nitsche et al., One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol. 7, 48 (2007)Google Scholar
  60. 60.
    D.J. Patel, Structural analysis of nucleic acid aptamers. Curr. Opin. Chem. Biol. 1(1), 32–46 (1997)Google Scholar
  61. 61.
    T. Hermann, D.J. Patel, Biochemistry—adaptive recognition by nucleic acid aptamers. Science 287(5454), 820–825 (2000)Google Scholar
  62. 62.
    B. Strehlitz, N. Nikolaus, R. Stoltenburg, Protein detection with aptamer biosensors. Sensors 8(7), 4296–4307 (2008)Google Scholar
  63. 63.
    J.-G. Walter, F. Stahl, T. Scheper, Aptamers as affinity ligands for downstream processing. Eng. Life Sci. 12(5), 496–506 (2012)Google Scholar
  64. 64.
    J.-G Walter et al., Aptasensors for small molecule detection. Z. Naturforsch. 67b 976–986 (2012)Google Scholar
  65. 65.
    M. Loenne et al., Aptamer-modified Nanoparticles as Biosensors, in Biosensors Based on Aptamers and Enzymes—Advances in biochemical engineering/biotechnology, ed. by M.B. Gu, H.-S. Kim (Springer, Heidelberg, 2014), pp. 121–154Google Scholar
  66. 66.
    A. Heilkenbrinker et al., Identification of the target binding site of ethanolamine binding aptamers and its exploitation for ethanolamine detection. Anal. Chem. 87(1), 677–685 (2015)Google Scholar
  67. 67.
    N. Hamaguchi, A. Ellington, M. Stanton, Aptamer beacons for the direct detection of proteins. Anal. Biochem. 294(2), 126–131 (2001)Google Scholar
  68. 68.
    R. Stoltenburg, C. Reinemann, B. Strehlitz, SELEX–a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 24(4), 381–403 (2007)Google Scholar
  69. 69.
    Ö. Kökpinar et al., Aptamer-based downstream processing of his-tagged proteins utilizing magnetic beads. Biotechnol. Bioeng. 108(10), 2371–2379 (2011)Google Scholar
  70. 70.
    G. Zhu, J.-G. Walter, Aptamer-Modified Magnetic Beads in Affinity Separation of Proteins, in Affinity Chromatography: Methods and Protocols, 2nd edn. ed. by S. Reichelt (Springer Protocols, Humana Press, 2015), pp. 67–82Google Scholar
  71. 71.
    E.J. Lee et al., Peptide nucleic acids are an additional class of aptamers. Rsc Advances 3(17), 5828–5831 (2013)Google Scholar
  72. 72.
    R. Bredehorst et al., Method for determining an unknown PNA sequence and uses thereof, ed. by E.P. Specification 2005Google Scholar
  73. 73.
    G. Vasapollo et al., Molecularly imprinted polymers: present and future prospective. Int. J. Mol. Sci. 12(9), 5908–5945 (2011)Google Scholar
  74. 74.
    S.A. Piletsky et al., Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays. Biosens. Bioelectron. 16(9–12), 701–707 (2001)Google Scholar
  75. 75.
    T.A. Sergeyeva et al., Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection. Anal. Chim. Acta 392(2–3), 105–111 (1999)Google Scholar
  76. 76.
    R.J. Umpleby et al., Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 804(1), 141–149 (2004)Google Scholar
  77. 77.
    F.A. Harraz, Porous silicon chemical sensors and biosensors: a review. Sens. Actuators B: Chem. 202, 897–912 (2014)Google Scholar
  78. 78.
    L.A. DeLouise, P.M. Kou, B.L. Miller, Cross-correlation of optical microcavity biosensor response with immobilized enzyme activity. Insights biosens. sensitivity Anal. Chem. 77(10), 3222–3230 (2005)Google Scholar
  79. 79.
    Z. Deng, E.C. Alocilja, Characterization of nanoporous silicon-based dna biosensor for the detection of salmonella enteritidis. Sens. J. IEEE 8(6), 775–780 (2008)Google Scholar
  80. 80.
    S.B. de Leon et al., Neurons culturing and biophotonic sensing using porous silicon. Appl. Phys. Lett. 84(22), 4361–4363 (2004)Google Scholar
  81. 81.
    M.P. Stewart, J.M. Buriak, Chemical and biological applications of porous silicon technology. Adv. Mater. 12(12), 859–869 (2000)Google Scholar
  82. 82.
    A. Birner et al., Silicon-based photonic crystals. Adv. Mater. 13(6), 377–388 (2001)Google Scholar
  83. 83.
    J.E. Lugo et al., Electrochemical sensing of dna with porous silicon layers. J. New Mater. Electrochem. Syst. 10(2), 113–116 (2007)Google Scholar
  84. 84.
    M.J. Song et al., Electrochemical biosensor array for liver diagnosis using silanization technique on nanoporous silicon electrode. J. Biosci. Bioeng. 103(1), 32–37 (2007)Google Scholar
  85. 85.
    S. Setzu et al., Porous silicon-based potentiometric biosensor for triglycerides. physica status solidi(a). 204(5), 1434–1438 (2007)Google Scholar
  86. 86.
    J. Zhang et al., Label-free electrochemical detection of tetracycline by an aptamer nano-biosensor. Anal. Lett. 45(9), 986–992 (2012)Google Scholar
  87. 87.
    M. Simion et al., Dual detection biosensor based on porous silicon substrate. Mater. Sci. Engi. B-Adv. Funct. Solid-State Mater. 178(19), 1268–1274 (2013)Google Scholar
  88. 88.
    L.M. Bonanno, L.A. DeLouise, Tunable detection sensitivity of opiates in urine via a label-free porous silicon competitive inhibition immunosensor. Anal. Chem. 82(2), 714–722 (2009)Google Scholar
  89. 89.
    G. Shtenberg et al., Picking up the pieces: a generic porous si biosensor for probing the proteolytic products of enzymes. Anal. Chem. 85(3), 1951–1956 (2012)Google Scholar
  90. 90.
    K.A. Kilian et al., Peptide-modified optical filters for detecting protease activity. ACS Nano 1(4), 355–361 (2007)Google Scholar
  91. 91.
    K.R. Beavers et al. Porous Silicon Functionalization for Drug Delivery and Biosensing by In Situ Peptide Nucleic Acid Synthesis. in Porous Semiconductors—Science and Technology (Alicante-Benidorm, Spain, 2014)Google Scholar
  92. 92.
    L. Yoo et al., A simple one-step assay platform based on fluorescence quenching of macroporous silicon. Biosens. Bioelectron. 41, 477–483 (2013)Google Scholar
  93. 93.
    K. Urmann et al., Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds. Anal. Chem. 87(3), 1999–2006 (2015)Google Scholar
  94. 94.
    V.M. Starodub et al., Control of myoglobin level in a solution by an immune sensor based on the photoluminescence of porous silicon. Sens. d Actuators B: Chem. 58(1–3), 409–414 (1999)Google Scholar
  95. 95.
    A.G. Cullis, L.T. Canham, Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353(6342), 335–338 (1991)Google Scholar
  96. 96.
    L.T. Canham, K. (Firm), Properties of porous silicon EMIS datareviews series no. 18. ed. by Leigh Canham (Institution of Electrical Engineers, London, 1997)Google Scholar
  97. 97.
    O. Bisi, S. Ossicini, L. Pavesi, Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38(1–3), 1–126 (2000)Google Scholar
  98. 98.
    G. Gaur, D. Koktysh, S.M. Weiss. Porous silicon biosensors using quantum dot signal amplifiers. Proc. of SPIE 8594, 859408 (2013) Google Scholar
  99. 99.
    X. Fan et al., Sensitive optical biosensors for unlabeled targets: a review. Anal. Chim. Acta 620(1–2), 8–26 (2008)Google Scholar
  100. 100.
    C. Pacholski et al., Reflective interferometric fourier transform spectroscopy: a self-compensating label-free immunosensor using double-layers of porous SiO2. J. Am. Chem. Soc. 128, 4250–4252 (2006)Google Scholar
  101. 101.
    L.M. Bonanno, L.A. DeLouise, Whole blood optical biosensor. Biosens. Bioelectron. 23(3), 444–448 (2007)Google Scholar
  102. 102.
    M.M. Orosco et al., Protein-coated porous-silicon photonic crystals for amplified optical detection of protease activity. Adv. Mater. 18(11), 1393–1396 (2006)Google Scholar
  103. 103.
    C. Pacholski et al., Biosensing using porous silicon double-layer interferometers: reflective interferometric Fourier transform spectroscopy. J. Am. Chem. Soc. 127(33), 11636–11645 (2005)Google Scholar
  104. 104.
    A. Ressine, G. Marko-Varga, T. Laurell, Porous silicon protein microarray technology and ultra-/superhydrophobic states for improved bioanalytical readout, in Biotechnology Annual Review, ed. by M.R. El-Gewely (Elsevier 2007), pp. 149–200Google Scholar
  105. 105.
    L. Danos, R. Greef, T. Markvart, Efficient fluorescence quenching near crystalline silicon from Langmuir-Blodgett dye films. Thin Solid Films 516(20), 7251–7255 (2008)Google Scholar
  106. 106.
    H.M. Nguyen et al., Efficient radiative and nonradiative energy transfer from proximal cdse/zns nanocrystals into silicon nanomembranes. ACS Nano 6(6), 5574–5582 (2012)Google Scholar
  107. 107.
    L. Gu, M. Orosco, M.J. Sailor, Detection of protease activity by FRET using porous silicon as an energy acceptor. physica status solidi (a), 206(6) pp. 1374–1376 (2009)Google Scholar
  108. 108.
    J.R. Unruh et al., Orientational dynamics and dye-dna interactions in a dye-labeled dna aptamer. Biophys. J. 88(5), 3455–3465 (2005)Google Scholar
  109. 109.
    B.P. Ramakers et al., Measurement of the endogenous adenosine concentration in humans in vivo: methodological considerations. Curr. Drug Metab. 9(8), 679–685 (2008)Google Scholar
  110. 110.
    J. Stagg, M.J. Smyth, Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29(39), 5346–5358 (2010)Google Scholar
  111. 111.
    G. Schulte, B.B. Fredholm, Signalling from adenosine receptors to mitogen-activated protein kinases. Cell. Signal. 15(9), 813–827 (2003)Google Scholar
  112. 112.
    L. Bekar et al., Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat. Med. 14(1), 75–80 (2008)Google Scholar
  113. 113.
    L.A. Conlay et al., Caffeine alters plasma adenosine levels. Nature 389(6647), 136–136 (1997)Google Scholar
  114. 114.
    D.E. Huizenga, J.W. Szostak, A DNA aptamer that binds adenosine and ATP. Biochemistry 34(2), 656–665 (1995)Google Scholar
  115. 115.
    J. Zhang et al., Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small 6(2), 201–204 (2010)Google Scholar
  116. 116.
    S. Guo et al., Solid-state label-free integrated aptasensor based on graphene-mesoporous silica-gold nanoparticle hybrids and silver microspheres. Anal. Chem. 83(20), 8035–8040 (2011)Google Scholar
  117. 117.
    L. Zhang et al., A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay. Biosens. Bioelectron. 25(8), 1897–1901 (2010)Google Scholar
  118. 118.
    K. Urmann et al. Highly Generic Aptamer-Based Porous Si Optical Biosensors. in Porous Semiconductors—Science and Technology.(Alicante-Benidorm, Spain, 2014)Google Scholar
  119. 119.
    S.A. Doyle, M.B. Murphy, U.S. Patent Aptamers and methods for their in vitro selection and uses thereof 2005Google Scholar
  120. 120.
    G. Zhu et al., Characterization of optimal aptamer-microarray binding chemistry and spacer design. Chem. Eng. Technol. 34(12), 2022–2028 (2011)Google Scholar
  121. 121.
    J.G. Walter et al., Systematic investigation of optimal aptamer immobilization for protein-microarray applications. Anal. Chem. 80(19), 7372–7378 (2008)Google Scholar
  122. 122.
    D. Grieshaber et al., Electrochemical biosensors—sensor principles and architectures. Sensors 8(3), 1400–1458 (2008)Google Scholar
  123. 123.
    D.R. Thevenot et al., Electrochemical biosensors: recommended definitions and classification: biosens Bioelectron. 16(1–2), 121–131 (2001)Google Scholar
  124. 124.
    F. De Filippo et al., Measurement of Porous Silicon Dielectric Constant by VUV Laser Harmonic Radiation. physica status solidi (a), 2000. 182(1) pp. 261–266Google Scholar
  125. 125.
    J. Zhang et al., Nano-porous light-emitting silicon chip as a potential biosensor platform. Anal. Lett. 40(8), 1549–1555 (2007)Google Scholar
  126. 126.
    J. Zhang et al., A label free electrochemical nanobiosensor study. Anal. Lett. 42(17), 2905–2913 (2009)Google Scholar
  127. 127.
    Y.-J. Kim et al., Electrochemical aptasensor for tetracycline detection. Bioprocess Biosyst. Eng. 33(1), 31–37 (2010)Google Scholar
  128. 128.
    C.C. Weber et al., Broad-spectrum protein biosensors for class-specific detection of antibiotics. Biotechnol. Bioeng. 89(1), 9–17 (2005)Google Scholar
  129. 129.
    C.S. Pundir, J. Narang, Determination of triglycerides with special emphasis on biosensors: a review. Int. J. Biol. Macromol. 61, 379–389 (2013)Google Scholar
  130. 130.
    R.R.K. Reddy et al., Estimation of triglycerides by a porous silicon based potentiometric biosensor. Curr. Appl. Phys. 3(2–3), 155–161 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Katharina Urmann
    • 1
    • 2
  • Elena Tenenbaum
    • 2
  • Johanna-Gabriela Walter
    • 1
  • Ester Segal
    • 2
    • 3
  1. 1.Institute of Technical ChemistryGottfried-Wilhelm Leibniz Universität HannoverHannoverGermany
  2. 2.Department of Biotechnology and Food EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael
  3. 3.Russell Berrie Nanotechnology InstituteTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations