Advertisement

Quantitative Analysis of Lead Position vs. Correction of Electrical Dyssynchrony in an Experimental Model of LBBB/CRT

  • David Soto-IglesiasEmail author
  • Nicolas Duchateau
  • Constantine Butakoff
  • David Andreu
  • Juan Fernández-Armenta
  • Bart Bijnens
  • Antonio Berruezo
  • Marta Sitges
  • Oscar Camara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)

Abstract

Cardiac resynchronization therapy (CRT) is a recommended treatment in patients with electrical dyssynchrony such as left bundle branch block (LBBB). The determination of the optimal leads position, and the quantification of the changes in electrical activation are two current major challenges. In this paper, we investigate these aspects through electroanatomical data from a controlled experimental protocol, which studied pigs with no structural disease under LBBB and CRT conditions. We propose to use a quasi-conformal mapping technique to standardize electroanatomical maps of endo- and epi-cardial walls of both ventricles to a common reference geometry, in which simple quantitative indices can be computed. Then, we investigate the relation between leads and simple surrogates of the recovery of the electrical activation based either on total activation times or on the spatial distribution of the patterns. Our methodology allows a better understanding of the complex electrical activation patterns in LBBB and CRT, and confirms hypotheses about the optimal leads position from previous studies.

Keywords

Electro-anatomical mapping LBBB CRT 

Notes

Acknowledgments

This study was partially founded by the Spanish Ministry of Science and Innovation (TIN2011-28067) and the Spanish Industrial and Technological Development Center (cvREMOD-CEN-20091044). The authors gratefully acknowledge the support of N Solanes, M Rigol, E Silva, A Doltra, L Gabrielli, L Mont, J Brugada (Hospital Clnic, Barcelona, Spain) and A Barcelo (Sorin Group, Barcelona, Spain) on the experimental protocol.

References

  1. 1.
    Bleeker, G., et al.: Clinical versus echocardiographic parameters to assess response to cardiac resynchronization therapy. Am. J. Cardiol. 97, 260–263 (2006)CrossRefGoogle Scholar
  2. 2.
    Singh, J., et al.: Left ventricular lead position and clinical outcome in the multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy (MADIT-CRT) trial. Circulation 123, 1159–1166 (2011)CrossRefGoogle Scholar
  3. 3.
    Gold, M., et al.: Comparison of stimulation sites within left ventricular veins on the acute hemodynamic effects of cardiac resynchronization therapy. Heart Rhythm 2, 376–381 (2005)CrossRefGoogle Scholar
  4. 4.
    Saxon, L., et al.: Influence of left ventricular lead location on outcomes in the COMPANION study. J. Cardiovasc. Electrophysiol. 20, 764–768 (2009)CrossRefGoogle Scholar
  5. 5.
    Huntjens, P., et al.: Influence of left ventricular lead position relative to scar location on response to cardiac resynchronization therapy: a model study. Europace 16, 62–68 (2014)CrossRefGoogle Scholar
  6. 6.
    Lumens, J., et al.: Comparative electromechanical and hemodynamic effects of left ventricular and biventricular pacing in dyssynchronous heart failure. JACC 62, 2395–2403 (2013)CrossRefGoogle Scholar
  7. 7.
    Soto-Iglesias, D., Butakoff, C., Andreu, D., Fernández-Armenta, J., Berruezo, A., Camara, O.: Evaluation of different mapping techniques for the integration of electro-anatomical voltage and imaging data of the left ventricle. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 391–399. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  8. 8.
    Karim, R., et al.: Surface flattening of the human left atrium and proof-of-concept clinical applications. Comput. Med. Imaging Graph. 38(4), 251–266 (2014)CrossRefGoogle Scholar
  9. 9.
    Lam, K.C., et al.: Genus-one surface registration via teichmüller extremal mapping. MICCAI 3, 25–32 (2014)Google Scholar
  10. 10.
    Zeng, W., et al.: Ricci flow for 3D shape analysis. IEEE PAMI 32, 662–677 (2010)CrossRefGoogle Scholar
  11. 11.
    Soto-Iglesias, D., et al.: Analyzing electrical patterns in an experimental swine model of dyssynchrony and CRT. In: IEEE Computing in Cardiology (CINC 2013), vol. 40, pp. 623–626 (2013)Google Scholar
  12. 12.
    Rigol, M., et al.: Development of a swine model of left bundle branch block for experimental studies of cardiac resynchronization therapy. J. Cardiovasc. Transl. Res. 6(4), 616–622 (2013)CrossRefGoogle Scholar
  13. 13.
    Jing, L., et al.: Patients with repaired tetralogy of fallot suffer from intra- and inter-ventricular cardiac dyssynchrony: a cardiac magnetic resonance study. J. Cardiovasc. Imaging 12, 1333–1343 (2014)Google Scholar
  14. 14.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth BSMSP, Statistics, vol. 1, pp. 281–297 (1967)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • David Soto-Iglesias
    • 1
    Email author
  • Nicolas Duchateau
    • 3
  • Constantine Butakoff
    • 1
  • David Andreu
    • 2
  • Juan Fernández-Armenta
    • 2
  • Bart Bijnens
    • 1
  • Antonio Berruezo
    • 2
  • Marta Sitges
    • 2
  • Oscar Camara
    • 1
  1. 1.PhySense, DTICUniversitat Pompeu FabraBarcelonaSpain
  2. 2.Cardiology Department, Thorax InstituteUniversity of BarcelonaBarcelonaSpain
  3. 3.Asclepios Research ProjectInria Sophia AntipolisSophia AntipolisFrance

Personalised recommendations