Left and Right Atrial Contribution to the P-wave in Realistic Computational Models

  • Axel Loewe
  • Martin W. Krueger
  • Pyotr G. Platonov
  • Fredrik Holmqvist
  • Olaf Dössel
  • Gunnar Seemann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)

Abstract

ECG markers derived from the P-wave are used frequently to assess atrial function and anatomy, e.g. left atrial enlargement. While having the advantage of being routinely acquired, the processes underlying the genesis of the P-wave are not understood in their entirety. Particularly the distinct contributions of the two atria have not been analyzed mechanistically. We used an in silico approach to simulate P-waves originating from the left atrium (LA) and the right atrium (RA) separately in two realistic models.

LA contribution to the P-wave integral was limited to 30 % or less. Around 20 % could be attributed to the first third of the P-wave which reflected almost only RA depolarization. Both atria contributed to the second and last third with RA contribution being about twice as large as LA contribution. Our results foster the comprehension of the difficulties related to ECG-based LA assessment.

Keywords

Atrial modeling Electrocardiogram P-wave Mathematical modeling Left atrial enlargement 

References

  1. 1.
    Ariyarajah, V., Mercado, K., Apiyasawat, S., et al.: Correlation of left atrial size with P-wave duration in interatrial block. Chest 128(4), 2615–2618 (2005)CrossRefGoogle Scholar
  2. 2.
    Carlson, J., Havmoller, R., Herreros, A., et al.: Can orthogonal lead indicators of propensity to atrial fibrillation be accurately assessed from the 12-lead ECG? Europace 7(2), 39–48 (2005)CrossRefGoogle Scholar
  3. 3.
    Chirife, R., Feitosa, G.S., Frankl, W.S.: Electrocardiographic detection of left atrial enlargement. Correlation of P wave with left atrial dimension by echocardiography. Br. Heart J. 37(12), 1281–1285 (1975)CrossRefGoogle Scholar
  4. 4.
    Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275, H301–321 (1998)Google Scholar
  5. 5.
    van Dam, P.M., van Oosterom, A.: Volume conductor effects involved in the genesis of the P wave. Europace 7(S2), 30–38 (2005)Google Scholar
  6. 6.
    Debbas, N.M., Jackson, S.H., de Jonghe, D., et al.: Human atrial repolarization: effects of sinus rate, pacing and drugs on the surface electrocardiogram. J. Am. Coll. Cardiol. 33(2), 358–365 (1999)CrossRefGoogle Scholar
  7. 7.
    Ecabert, O., Peters, J., Schramm, H., et al.: Automatic model-based segmentation of the heart in CT images. IEEE Trans. Med. Imaging 27(9), 1189–1201 (2008)CrossRefGoogle Scholar
  8. 8.
    Hancock, E.W., Deal, B.J., Mirvis, D.M., et al.: AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part V. J. Am. Coll. Cardiol. 53(11), 992–1002 (2009)CrossRefGoogle Scholar
  9. 9.
    Hazen, M.S., Marwick, T.H., Underwood, D.A.: Diagnostic accuracy of the resting electrocardiogram in detection and estimation of left atrial enlargement: an echocardiographic correlation in 551 patients. Am. Heart. J. 122(3 Pt 1), 823–828 (1991)CrossRefGoogle Scholar
  10. 10.
    Ho, S.Y., Sanchez-Quintana, D., Cabrera, J.A., et al.: Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. J. Cardiovasc. Electrophysiol. 10(11), 1525–1533 (1999)CrossRefGoogle Scholar
  11. 11.
    Hopkins, C.B., Barrett, O.J.: Electrocardiographic diagnosis of left atrial enlargement. Role of the P terminal force in lead V1. J. Electrocardiol. 22(4), 359–363 (1989)CrossRefGoogle Scholar
  12. 12.
    Ihara, Z., van Oosterom, A., Hoekema, R.: Atrial repolarization as observable during the PQ interval. J. Electrocardiol. 39(3), 290–297 (2006)CrossRefGoogle Scholar
  13. 13.
    Josephson, M.E., Kastor, J.A., Morganroth, J.: Electrocardiographic left atrial enlargement. Electrophysiologic, echocardiographic and hemodynamic correlates. Am. J. Cardiol. 39(7), 967–971 (1977)CrossRefGoogle Scholar
  14. 14.
    Keller, D.U.J., Weber, F.M., Seemann, G., et al.: Ranking the influence of tissue conductivities on ECGs. IEEE Trans. Biomed. Eng. 57(7), 1568–1576 (2010)CrossRefGoogle Scholar
  15. 15.
    Krueger, M.W., Dorn, A., Keller, D.U.J., et al.: In-silico modeling of atrial repolarization in normal and atrial fibrillation remodeled state. Med. Biol. Eng. Comput. 51(10), 1105–1119 (2013)CrossRefGoogle Scholar
  16. 16.
    Krueger, M.W., Seemann, G., Rhode, K., et al.: Personalization of atrial anatomy and electrophysiology as a basis for clinical modeling of radio-frequency ablation of atrial fibrillation. IEEE Trans. Med. Imaging 32(1), 73–84 (2013)CrossRefGoogle Scholar
  17. 17.
    Krueger, M.W., Severi, S., Rhode, K., et al.: Alterations of atrial electrophysiology related to hemodialysis session: insights from a multiscale computer model. J. Electrocardiol. 44(2), 176–183 (2011)CrossRefGoogle Scholar
  18. 18.
    Lemery, R., Birnie, D., Tang, A.S.L., et al.: Normal atrial activation and voltage during sinus rhythm in the human heart: an endocardial and epicardial mapping study in patients with a history of atrial fibrillation. J. Cardiovasc. Electrophysiol. 18(4), 402–408 (2007)CrossRefGoogle Scholar
  19. 19.
    Lipman, B.S.: Clinical scalar electrocardiography. Acad. Med. 40, 815 (1965)Google Scholar
  20. 20.
    Lu, W., Zhu, X., Chen, W., et al.: A computer model based on real anatomy for electrophysiology study. Adv. Eng. Softw. 42(7), 463–476 (2011)MATHCrossRefGoogle Scholar
  21. 21.
    de Luna, A.B., Platonov, P., Cosio, F.G., et al.: Interatrial blocks. A separate entity from left atrial enlargement. J. Electrocardiol. 45, 445–451 (2012)CrossRefGoogle Scholar
  22. 22.
    Magnani, J.W., Williamson, M.A., Ellinor, P.T., et al.: P wave indices: current status and future directions in epidemiology, clinical, and research applications. Circ. Arrhythm. Electrophysiol. 2(1), 72–79 (2009)CrossRefGoogle Scholar
  23. 23.
    Michelucci, A., Bagliani, G., Colella, A., et al.: P wave assessment: state of the art update. Card. Electrophysiol. Rev. 6(3), 215–220 (2002)CrossRefGoogle Scholar
  24. 24.
    Morris, J.J.J., Estes, E.H.J., Whalen, R.E., et al.: P-wave analysis in valvular heart disease. Circulation 29, 242–252 (1964)CrossRefGoogle Scholar
  25. 25.
    Ndrepepa, G., Zrenner, B., Deisenhofer, I., et al.: Relationship between surface electrocardiogram characteristics and endocardial activation sequence in patients with typical atrial flutter. Z. Kardiol. 89(6), 527–537 (2000)CrossRefGoogle Scholar
  26. 26.
    van Oosterom, A., Jacquemet, V.: Genesis of the P wave: atrial signals as generated by the equivalent double layer source model. Europace 7(S2), 21–29 (2005)CrossRefGoogle Scholar
  27. 27.
    Ozdemir, O., Soylu, M., Demir, A.D., et al.: P-wave durations as a predictor for atrial fibrillation development in patients with hypertrophic cardiomyopathy. Int. J. Cardiol. 94(2–3), 163–166 (2004)CrossRefGoogle Scholar
  28. 28.
    Platonov, P.G., Mitrofanova, L., Ivanov, V., et al.: Substrates for intra-atrial and interatrial conduction in the atrial septum. Heart Rhythm 5(8), 1189–1195 (2008)CrossRefGoogle Scholar
  29. 29.
    Potse, M., Dube, B., Vinet, A.: Cardiac anisotropy in boundary-element models for the electrocardiogram. Med. Biol. Eng. Comput. 47(7), 719–729 (2009)CrossRefGoogle Scholar
  30. 30.
    Seemann, G., Sachse, F.B., Karl, M., et al.: Framework for modular, flexible and efficient solving the cardiac bidomain equation using PETSc. Math. Ind. 15, 363–369 (2010)Google Scholar
  31. 31.
    Wagner, G.S., Strauss, D.G.: Marriott’s Practical Electrocardiography. Lippincott Williams & Wilkins, Philadelphia (2013)Google Scholar
  32. 32.
    Wilhelms, M., Hettmann, H., Maleckar, M.M.C., et al.: Benchmarking electrophysiological models of human atrial myocytes. Front. Physiol. 3, 1–16 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Axel Loewe
    • 1
  • Martin W. Krueger
    • 1
    • 2
  • Pyotr G. Platonov
    • 3
    • 4
  • Fredrik Holmqvist
    • 3
    • 4
  • Olaf Dössel
    • 1
  • Gunnar Seemann
    • 1
  1. 1.Institute of Biomedical EngineeringKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.ABB Corporate ResearchLadenburgGermany
  3. 3.Department of Cardiology and The Center for Integrative Electrocardiology (CIEL)Lund UniversityLundSweden
  4. 4.Department of CardiologySkåne University HospitalLundSweden

Personalised recommendations