Advertisement

Sequential State Estimation for Electrophysiology Models with Front Level-Set Data Using Topological Gradient Derivations

  • A. Collin
  • D. Chapelle
  • P. Moireau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)

Abstract

We propose a new sequential estimation method for making an electrophysiology model patient-specific, with data in the form of level sets of the electrical potential. Our method incorporates a novel correction term based on topological gradients, in order to track solutions of complex patterns. Our assessments demonstrate the effectiveness of this approach, including in a realistic case of atrial fibrillation.

Keywords

Electrophysiology modeling Data assimilation Estimation Observer Bidomain equations Topological gradient Shape derivative 

Notes

Acknowledgment

The research leading to these results has received partial funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration, under grant agreement #611823 (VP2HF Project).

References

  1. 1.
    Burger, M., Hackl, B., Ring, W.: Incorporating topological derivatives into level set methods. J. Comput. Phys. 194(1), 344–362 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Chabiniok, R., Moireau, P., Lesault, P.-F., Rahmouni, A., Deux, J.-F., Chapelle, D.: Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech. Model. Mechanobiol. 11(5), 609–630 (2012)CrossRefGoogle Scholar
  3. 3.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (1991)CrossRefGoogle Scholar
  4. 4.
    Chapelle, D., Collin, A., Gerbeau, J.-F.: A surface-based electrophysiology model relying on asymptotic analysis and motivated by cardiac atria modeling. M3AS 23(14), 2749–2776 (2013)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Colli Franzone, P., Pavarino, L.F., Scacchi, S.: Mathematical Cardiac Electrophysiology. MS&A, vol. XIV. Springer, Switzerland (2014)zbMATHGoogle Scholar
  6. 6.
    Collin, A., Chapelle, D., Moireau, P.: A Luenberger observer for reaction-diffusion models with front position data. Preprint available in HAL electronic archive (2014)Google Scholar
  7. 7.
    Collin, A., Gerbeau, J.-F., Hocini, M., Haïssaguerre, M., Chapelle, D.: Surface-based electrophysiology modeling and assessment of physiological simulations in atria. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 352–359. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  8. 8.
    Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275, H301–H321 (1998)Google Scholar
  9. 9.
    Doessel, O., Krueger, M.W., Weber, F.M., Schilling, C., Schulze, W.H.W., Seemann, G.: A framework for personalization of computational models of the human atria. In: EMBC, vol. 2011, pp. 4324–4328 (2011)Google Scholar
  10. 10.
    He, L., Kao, C.Y., Osher, S.: Incorporating topological derivatives into shape derivatives based level set methods. J. Comput. Phys. 225(1), 891–909 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Hintermüller, M., Laurain, A.: Multiphase image segmentation and modulation recovery based on shape and topological sensitivity. J. Math. Imaging Vis. 35(1), 1–22 (2009)CrossRefGoogle Scholar
  12. 12.
    Konukoglu, E., Clatz, O., Menze, B.H., Stieltjes, B., Weber, M.-A., Mandonnet, E., Delingette, H., Ayache, N.: Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans. Med. Imaging 29(1), 77–95 (2010)CrossRefGoogle Scholar
  13. 13.
    Moireau, P., Chapelle, D.: Reduced-order unscented Kalman filtering with application to parameter identification in large-dimensional systems. ESAIM Control Optim. Calc. Var. 17(2), 380–405 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Moreau-Villeger, V., Delingette, H., Sermesant, M., Ashikaga, H., McVeigh, E., Ayache, N.: Building maps of local apparent conductivity of the epicardium with a 2-D electrophysiological model of the heart. IEEE Trans. Biomed. Eng. 53(8), 1457–1466 (2006)CrossRefGoogle Scholar
  15. 15.
    Ramanathan, C., Ghanem, R.J., Jia, P., Ryu, K., Rudy, Y.: Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat. Med. 10, 422–428 (2004)CrossRefGoogle Scholar
  16. 16.
    Schenone, E., Collin, A., Gerbeau, J.-F.: Numerical simulations of full electrocardiogram cycle. Accepted for Publication in IJNMBE (2015)Google Scholar
  17. 17.
    Smith, N., de Vecchi, A., McCormick, M., Nordsletten, D., Camara, O., Frangi, A.F., Delingette, H., Sermesant, M., Relan, J., Ayache, N., Krueger, M.W., Schulze, W.H.W., Hose, R., Valverde, I., Beerbaum, P., Staicu, C., Siebes, M., Spaan, J., Hunter, P., Weese, J., Lehmann, H., Chapelle, D., Rezavi, R.: euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus 1(3), 349–364 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Inria Saclay Ile-de-FranceMΞDISIM TeamPalaiseauFrance

Personalised recommendations