Hemodynamics in Aortic Regurgitation Simulated Using a Computational Cardiovascular System Model

  • G. Palau-Caballero
  • J. Walmsley
  • P. Rudenick
  • A. Evangelista
  • J. Lumens
  • T. Delhaas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)

Abstract

The influence of left ventricular and aortic tissue properties on hemodynamics in patients with aortic regurgitation (AR) is unclear. In this study we aim: (1) to assess the capability of the CircAdapt model of the heart and circulation to simulate hemodynamics in AR; (2) to determine the interaction between aortic compliance and AR using CircAdapt. We simulated three degrees of AR by changing the aortic regurgitant orifice area (ROA) with normal and low aortic compliance. The higher the ROA is, the higher the systolic left ventricular and aortic pressures, the lower the diastolic aortic pressures and the higher the diastolic left ventricular pressures are. For low aortic compliance, those effects are exacerbated, but the regurgitant blood volume is decreased. These simulation data show the capability of CircAdapt to simulate hemodynamics in AR, and suggest that patient-to-patient variability in aortic compliance should be taken into account when assessing AR severity using imaging-based hemodynamic metrics.

Keywords

Aortic insufficiency Compliance Computational modeling Retrograde flow 

References

  1. 1.
    Enriquez-Sarano, M., Tajik, A.J.: Aortic regurgitation. N. Eng. J. Med 351, 1539–1546 (2004)CrossRefGoogle Scholar
  2. 2.
    Bonow, R.O.: Aortic Regurgitation: Time to Reassess Timing of Valve Replacement? JACC Cardiovasc. Imaging 4, 223–230 (2011)CrossRefGoogle Scholar
  3. 3.
    Nishimura, R.A., Otto, C.M., Bonow, R.O., Carabello, B.A., et al.: 2014 AHA/ACC guideline for the management of patients with valvular heart disease. JACC 63, e57–e185 (2014)CrossRefGoogle Scholar
  4. 4.
    Detaint, D., Messika-Zeitoun, D., Maalouf, J., Tribouilloy, C., et al.: Quantitative echocardiographic determinants of clinical outcome in asymptomatic patients with aortic regurgitation. JACC Cardiovasc. Imaging 1, 1–11 (2008)CrossRefGoogle Scholar
  5. 5.
    Griffin, B.P., Flachskampf, F.A., Siu, S., Weyman, A.E., et al.: The effects of regurgitant orifice size, chamber compliance, and systemic vascular resistance on aortic regurgitant velocity slope and pressure half-time. Am. Heart J. 122, 1049–1056 (1991)CrossRefGoogle Scholar
  6. 6.
    Arts, T., Delhaas, T., Bovendeerd, P., Verbeek, X., Prinzen, F.W.: Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model. Am. J. Physiol. Heart Circ. Physiol. 288, H1943–H1954 (2005)CrossRefGoogle Scholar
  7. 7.
    Lumens, J., Delhaas, T., Kirn, B., Arts, T.: Three-wall segment (TriSeg) model describing mechanics and hemodynamics of ventricular interaction. Ann. Biomed. Eng. 37, 2234–2255 (2009)CrossRefGoogle Scholar
  8. 8.
    Arts, T., Reesink, K., Kroon, W., Delhaas, T.: Simulation of adaptation of blood vessel geometry to flow and pressure: implications for arterio-venous impedance. Mech. Re. Commun. 42, 15–21 (2012)CrossRefGoogle Scholar
  9. 9.
    Teague, S.M., Heinsimer, J.A., Anderson, J.L., Sublett, K., et al.: Quantification of aortic regurgitation utilizing continuous wave doppler ultrasound. JACC 8, 592–599 (1986)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • G. Palau-Caballero
    • 1
  • J. Walmsley
    • 1
  • P. Rudenick
    • 2
  • A. Evangelista
    • 3
  • J. Lumens
    • 1
  • T. Delhaas
    • 1
  1. 1.Department of Biomedical EngineeringCardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityMaastrichtThe Netherlands
  2. 2.Physense, Universitat Pompeu Fabra (UPF)BarcelonaSpain
  3. 3.Hospital General Universitari Vall d’HebronBarcelonaSpain

Personalised recommendations