Very High-Resolution Imaging of Post-Mortem Human Cardiac Tissue Using X-Ray Phase Contrast Tomography

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9126)


This paper investigates the 3D microscopic structure of ex-vivo human cardiac muscle. Usual 3D imaging techniques such as DMRI or CT do not achieve the required resolution to visualise cardio-myocytes, therefore we employ X-ray phase contrast micro-CT, developed at the European Synchrotron Radiation Facility (ESRF). Nine tissue samples from the left ventricle and septum were prepared and imaged at an isotropic resolution of 3.5 \(\upmu \)m, which is sufficient to visualise cardio-myocytes. The obtained volumes are compared with 2D histological examinations, which serve as a basis for interpreting the 3D X-ray phase-contrast results. Our experiments show that 3D X-ray phase-contrast micro-CT is a viable technique for investigating the 3D arrangement of myocytes ex-vivo at a microscopic level, allowing a better understanding of the 3D cardiac tissue architecture.


Phase-contrast imaging Histology Cardio-myocyte 



We would like to thank F. Peyrin, C. Olivier, L. Wang and M. Ozon for technical support at ESRF Grenoble. This study was funded by the French National Research Agency (ANR) through the MOSIFAH project (Multimodal and multiscale modeling and simulation of the fibre architecture of the human heart, ANR-13-MONU-0009).


  1. 1.
    Baltes, C., Radzwill, N., Bosshard, S., Marek, D., Rudin, M.: Micro mri of the mouse brain using a novel 400 mhz cryogenic quadrature rf probe. NMR Biomed. 22(8), 834–842 (2009). CrossRefGoogle Scholar
  2. 2.
    Castelli, E., Tonutti, M., Arfelli, F., Longo, R., Quaia, E., Rigon, L., Sanabor, D., Zanconati, F., Dreossi, D., Abrami, A., Quai, E., Bregant, P., Casarin, K., Chenda, V., Menk, R.H., Rokvic, T., Vascotto, A., Tromba, G., Cova, M.A.: Mammography with synchrotron radiation: first clinical experience with phase-detection technique. Radiology 259(3), 684–694 (2011)CrossRefGoogle Scholar
  3. 3.
    Cloetens, P., Pateyron, M., Buffière, J.Y., Peix, G., Baruchel, J., Peyrin, F., Schlenker, M.: Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J. Appl. Phys. 81(9), 5878–5886 (1997)CrossRefGoogle Scholar
  4. 4.
    Cloetens, P., Ludwig, W., Baruchel, J., Guigay, J.P., Pernot-Rejmnkov, P., Salom-Pateyron, M., Schlenker, M., Buffire, J.Y., Maire, E., Peix, G.: Hard x-ray phase imaging using simple propagation of a coherent synchrotron radiation beam. J. Phys. D Appl. Phys. 32(10A), A145–A151 (1999)CrossRefGoogle Scholar
  5. 5.
    Cooper, D.M.L., Erickson, B., Peele, A., Hannah, K., Thomas, C.D.L., Clement, J.G.: Visualization of 3D osteon morphology by synchrotron radiation micro-CT. J. Anat. 219(4), 481–489 (2011)CrossRefGoogle Scholar
  6. 6.
    Dávila Serrano, E.E., Guigues, L., Roux, J.-P., Cervenansky, F., Camarasu-Pop, S., Riveros Reyes, J.G., Flórez-Valencia, L., Hernández Hoyos, M., Orkisz, M.: CreaTools: a framework to develop medical image processing software: application to simulate pipeline stent deployment in intracranial vessels with aneurysms. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 55–62. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  7. 7.
    Desrosiers, P.A., Michalowicz, G., Jouk, P.-S., Usson, Y., Zhu, Y.: Modeling of the optical behavior of myocardial fibers in polarized light imaging. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2012. LNCS, vol. 7746, pp. 235–244. Springer, Heidelberg (2013) Google Scholar
  8. 8.
    Ferreira, P., Kilner, P., McGill, L.A., Nielles-Vallespin, S., Scott, A., Ho, S., McCarthy, K., Haba, M., Ismail, T., Gatehouse, P., de Silva, R., Lyon, A., Prasad, S., Firmin, D., Pennell, D.: In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 16(1), 87 (2014)CrossRefGoogle Scholar
  9. 9.
    Jouk, P.S., Mourad, A., Milisic, V., Michalowicz, G., Raoult, A., Caillerie, D., Usson, Y.: Analysis of the fiber architecture of the heart by quantitative polarized light microscopy: accuracy, limitations and contribution to the study of the fibre architecture of the ventricles during fetal and neonatal life. Eur. J. Cardio-Thorac. Surg. 31(5), 915–921 (2007)CrossRefGoogle Scholar
  10. 10.
    Kidoguchi, K., Tamaki, M., Mizobe, T., Koyama, J., Kondoh, T., Kohmura, E., Sakurai, T., Yokono, K., Umetani, K.: In vivo x-ray angiography in the mouse brain using synchrotron radiation. Stroke 347, 1856–1861 (2006)CrossRefGoogle Scholar
  11. 11.
    Langer, M., Cloetens, P., Pacureanu, A., Peyrin, F.: X-ray in-line phase tomography of multimaterial objects. Opt. Lett. 37(11), 2151–2153 (2012)CrossRefGoogle Scholar
  12. 12.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Paganin, D., Mayo, S.C., Gureyev, T.E., Miller, P.R., Wilkins, S.W.: Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206(1), 33–40 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Varray, F., Wang, L., Fanton, L., Zhu, Y.-M., Magnin, I.E.: High resolution extraction of local human cardiac fibre orientations. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 150–157. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Wang, L., Zhu, Y., Li, H., Liu, Y., Magnin, I.E.: Multiscale modeling and simulation of the cardiac fiber architecture for dmri. IEEE Trans. Biomed. Eng. 59(1), 16–19 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Université de Lyon, CREATIS, CNRS #5220, Inserm U1044, INSA-Lyon, Université Lyon 1LyonFrance
  2. 2.European Synchrotron Radiation FacilityGrenobleFrance
  3. 3.Université Joseph Fourier, TIMC, CNRS #5220, Inserm U1044GrenobleFrance

Personalised recommendations