What Makes You Bike? Exploring Persuasive Strategies to Encourage Low-Energy Mobility

  • Matthias Wunsch
  • Agnis Stibe
  • Alexandra Millonig
  • Stefan Seer
  • Chengzhen Dai
  • Katja Schechtner
  • Ryan C. C. Chin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9072)

Abstract

This paper explores three persuasive strategies and their capacity to encourage biking as a low-energy mode of transportation. The strategies were designed based on: (I) triggering messages that harness social influence to facilitate more frequent biking, (II) a virtual bike tutorial to increase biker’s self-efficacy for urban biking, and (III) an arranged bike ride to help less experienced bikers overcome initial barriers towards biking. The potential of these strategies was examined based on self-reported trip data from 44 participants over a period of four weeks, questionnaires, and qualitative interviews. Strategy I showed a significant increase of 13.5 percentage points in share of biking during the intervention, strategy II indicated an increase of perceived self-efficacy for non-routine bikers, and strategy III provided participants with a positive experience of urban biking. The explored strategies contribute to further research on the design and implementation of persuasive technologies in the field of mobility.

Keywords

Low-energy mobility Persuasion Biking Cycling Behavior change Transportation Sustainability Socially influencing systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ajzen, I.: The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes 50(2), 179–211 (1991)CrossRefGoogle Scholar
  2. 2.
    Bandura, A.: Guide For Constructing Self-Efficacy Scales. In: Pajares, F., Urdan, T.C. (eds.) Self-Efficacy Beliefs of Adolescents, pp. 307–337. Information Age Publishing, Greenwich (2006)Google Scholar
  3. 3.
    Bandura, A.: Social Foundations of Thought and Action: A Social Cognitive Theory. Prentice-Hall, Englewood Cliffs (1986)Google Scholar
  4. 4.
    Baumeister, R.F.: The Self. In: Gilbert, D.T., Fiske, S.T., Lindzey, G. (eds.) The Handbook of Social Psychology, pp. 680–740. McGraw-Hill, New York (1998)Google Scholar
  5. 5.
    Chittaro, L.: Changing User’s Safety Locus of Control through Persuasive Play: An Application to Aviation Safety. In: Spagnolli, A., Chittaro, L., Gamberini, L. (eds.) PERSUASIVE 2014. LNCS, vol. 8462, pp. 31–42. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Cialdini, R.B.: Influence: The Psychology of Persuasion. HarperCollins ebooks (2007)Google Scholar
  7. 7.
    Flüchter, K., Wortmann, F., Fleisch, E.: Digital Commuting: The Effect of Social Normative Feedback on E-Bike Commuting – Evidence From A Field Study. In: Proceedings of the European Conference on Information Systems ECIS, pp. 1–14. Tel Aviv (2014)Google Scholar
  8. 8.
    Fogg, B.J.: Persuasive Technology: Using Computers to Change What We Think and Do. Morgan Kaufmann, San Francisco (2003)Google Scholar
  9. 9.
    Froehlich, J., Dillahunt, T., Klasnja, P., Mankoff, J., Consolvo, S., Harrison, B., Landay, J.A.: UbiGreen: Investigating a Mobile Tool for Tracking and Supporting Green Transportation Habits. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1043–1052. ACM, New York (2009)Google Scholar
  10. 10.
    Gabrielli, S., Maimone, R.: Are Change Strategies Affecting Users’ Transportation Choices? In: Proceedings of the Biannual Conference of the Italian Chapter of SIGCHI, pp. 1–4. ACM, New York (2013)CrossRefGoogle Scholar
  11. 11.
    Gärling, T., Fujii, S.: Travel behavior modification: Theories, Methods, and Programs. In: The Expanding Sphere of Travel Behaviour Research, pp. 97–128. Emerald Group (2009)Google Scholar
  12. 12.
    Gass, J.S., Seiter, R.H.: Persuasion, Social Influence, and Compliance Gaining. Allyn & Bacon, Boston (2010)Google Scholar
  13. 13.
    Gatersleben, B., Appleton, K.M.: Contemplating Cycling to Work: Attitudes and Perceptions in Different Stages of Change. Transportation Research Part A: Policy and Practice 41(4), 302–312 (2007)Google Scholar
  14. 14.
    Heinen, E., van Wee, B., Maat, K.: Commuting by Bicycle: An Overview of the Literature. Transport Reviews 30(1), 59–96 (2010)CrossRefGoogle Scholar
  15. 15.
    Malone, T.W., Lepper, M.: Making Learning Fun: A Taxonomy of Intrinsic Motivations for Learning. In: Snow, R.E., Farr, M.J. (eds.) Aptitude, Learning and Instruction: III. Conative and Affective Process Analyses, pp. 223–253. Erlbaum, Hillsdale (1987)Google Scholar
  16. 16.
    Mayring, P.: Qualitative Content Analysis. Forum Qualitative Sozialforschung / Forum: Qualitative Social Research 1(2), Art. 20 (2000), http://nbn-resolving.de/urn:nbn:de:0114-fqs0002204
  17. 17.
  18. 18.
    Prochaska, J.O., DiClemente, C.C.: The Transtheoretical Approach: Crossing Traditional Boundaries of Change. Dow Jones/Irwin, Homewood IL (1984)Google Scholar
  19. 19.
    Stibe, A.: Socially Influencing Systems: Persuading People to Engage with Publicly Displayed Twitter-based Systems. Acta Universitatis Ouluensis (2014)Google Scholar
  20. 20.
    Stibe, A.: Towards a Framework for Socially Influencing Systems: Meta-Analysis of Four PLS-SEM Based Studies. In: MacTavish, T., Basapur, S. (eds.) Persuasive Technology. LNCS, vol. 9072, pp. 171–182. Springer, Heidelberg (2015)Google Scholar
  21. 21.
    United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision Highlights (2014)Google Scholar
  22. 22.
    Wills, T.A.: Downward Comparison Principles in Social Psychology. Psychological Bulletin 90(2), 245–271 (1981)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Wilson, S.R., Benner, L.A.: The Effects of Self-Esteem and Situation upon Comparison Choices During Ability Evaluation. Sociometry 34(2), 381–397 (1971)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Matthias Wunsch
    • 1
    • 3
  • Agnis Stibe
    • 2
  • Alexandra Millonig
    • 1
  • Stefan Seer
    • 1
  • Chengzhen Dai
    • 2
  • Katja Schechtner
    • 2
  • Ryan C. C. Chin
    • 2
  1. 1.Austrian Institute of TechnologyViennaAustria
  2. 2.MIT Media LabCambridgeUSA
  3. 3.Human Computer Interaction, Vienna University of TechnologyViennaAustria

Personalised recommendations