Advertisement

Does Trigger Location Matter? The Influence of Localization and Motivation on the Persuasiveness of Mobile Purchase Recommendations

  • Frank BastenEmail author
  • Jaap Ham
  • Cees Midden
  • Luciano Gamberini
  • Anna Spagnolli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9072)

Abstract

Thanks to the ubiquity of wireless network, location has become an easily available resource to exploit when sending purchase recommendations. We rely on Fogg’s Behavior model (FBM; Fogg, 2009) and on previous research to study whether the appearance of such recommendations when the user spatially approaches a target item improves the recommendation persuasiveness. We created a virtual supermarket, where products images are displayed on posters and customers can scan products’ QR codes with a tablet to buy them. The persuasiveness of triggers co-located or not with the target product was examined, in conditions of high vs. poor motivation to purchase that product. Confirming our hypotheses, triggers co-located with the target product lead to higher sales of that product. Furthermore, participants who received a co-located trigger that also contained a motivating message purchased more items than participants in other conditions. Therefore, setting triggers to appear at a specific location proximal to the target item can change behavior, especially for motivated subjects.

Keywords

Persuasive technology Fogg behavior model Triggers Motivation Location-based Virtual supermarket 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bohnenberger, T., Jameson, A., Krüger, A., Butz, A.: Location-aware shopping assistance: Evaluation of a decision-theoretic approach. In: Paternó, F. (ed.) Mobile HCI 2002. LNCS, vol. 2411, pp. 155–169. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Felfernig, A., et al.: Persuasive recommendation: serial position effects in knowledge-based recommender systems. In: de Kort, Y.A.W., IJsselsteijn, W.A., Midden, C., Eggen, B., Fogg, B.J. (eds.) PERSUASIVE 2007. LNCS, vol. 4744, pp. 283–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Felfernig, A., Jeran, M., Ninaus, G., Reinfrank, F., Reiterer, S., Stettinger, M.: Basic approaches in recommendation systems. In: Recommendation Systems in Software Engineering, pp. 15–37. Springer, Berlin (2014) Google Scholar
  4. 4.
    Fogg, B.J.: A behavior model for persuasive design. In: Persuasive 2009; 4th International Conference on Persuasive Technology, Claremont, CA, USA, April 26-29 (2009) Google Scholar
  5. 5.
    Gröppel-Klein, A., Broeckelmann, P.: The influence of location-aware mobile marketing messages on consumers’ buying behavior. In: Diamantopoulos, A., Fritz, W., Hildebrandt, L. (eds.) Quantitative Marketing and Marketing Management, pp. 353–377. Springer, Wiesbaden (2012) Google Scholar
  6. 6.
    Hühn, A.E., Khan, V.J., van Gisbergen, M., Ketelaar, P., Nuijten, K.: Mobile= location= effect. The effect of location on perceived intrusion of mobile. Esomar Publication Series C11, 315–322 (2011) Google Scholar
  7. 7.
    Kamei, K., Shinozawa, K., Ikeda, T., Utsumi, A., Miyashita, T., Hagita, N.: Recommendation from robots in a real-world retail shop. In: ICMI-MLMI 2010: International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction. ACM, New York (2010) Google Scholar
  8. 8.
    Kaptein, M., Eckles, D.: Selecting effective means to any end: Futures and ethics of persuasion profiling. In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) PERSUASIVE 2010. LNCS, vol. 6137, pp. 82–93. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Karremans, J.C.T.M., Stroebe, W., Claus, J.: Beyond Vicary’s fantasies: The impact of subliminal priming and brand choice. J of Exp. Soc. Psy. 42(6), 792–798 (2006)CrossRefGoogle Scholar
  10. 10.
    Kowatsch, T., Maass, W.: In-store consumer behavior: How mobile recommendation agents influence usage intentions, product purchases, and store preferences. Computers in Human Behavior 26(4), 697–704 (2010)CrossRefGoogle Scholar
  11. 11.
    Masthoff, J., Langrial, S., van Deemter, K.: Personalizing triggers for charity actions. In: Berkovsky, S., Freyne, J. (eds.) PERSUASIVE 2013. LNCS, vol. 7822, pp. 125–136. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Ölander, F., Thøgersen, J.: Understanding of consumer behavior as a prerequisite for environmental protection. Journal of Consumer Policy 18(4), 345–385 (1995)CrossRefGoogle Scholar
  13. 13.
    Steadman, I.: Tesco brings ‘virtual grocery stores’ to the UK, Wired (August 7, 2012), http://www.wired.co.uk/news/archive/2012-08/07/tesco-virtual-store
  14. 14.
    Triandis, H.C.: Values, attitudes, and interpersonal behavior. In: Page, M.M. (ed.) Nebras-ka Symposium on Motivation, pp. 195–259. U. of Nebraska Press, Lincoln (1979)Google Scholar
  15. 15.
    van der Heijden, H.: Mobile decision support for in-store purchase decisions. Decision Support Systems 42(2), 656–663 (2006)CrossRefGoogle Scholar
  16. 16.
    Xiao, B., Benbasat, I.: E-commerce product recommendation agents: use, characteristics, and impact. Mis Quarterly 31(1), 137–209 (2007)Google Scholar
  17. 17.
    Tintarev, N., Masthoff, J.: Evaluating the effectiveness of explanations for recommender systems. UMUAI 22, 399–439 (2012)Google Scholar
  18. 18.
    Pu, P., Chen, L., Hu, R.: Evaluating recommender systems from the user’s perspective: survey of the state of the art. UMUAI 22, 317–355 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Frank Basten
    • 1
    Email author
  • Jaap Ham
    • 1
  • Cees Midden
    • 1
  • Luciano Gamberini
    • 2
  • Anna Spagnolli
    • 2
  1. 1.Human-Technology Interaction GroupEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Human Technology Lab, Department of General PsychologyUniversity of PadovaPadovaItaly

Personalised recommendations