Asymptotically Precise Ranking Functions for Deterministic Size-Change Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9139)

Abstract

The size-change abstraction (SCA) is a popular program abstraction for termination analysis, and has been successfully implemented for imperative, functional and logic programs. Recently, it has been shown that SCA is also an attractive domain for the automatic analysis of the computational complexity of programs. In this paper, we provide asymptotically precise ranking functions for the special case of deterministic size-change systems. As a consequence we also obtain the result that the asymptotic complexity of deterministic size-change systems is exactly polynomial and that the exact integer exponent can be computed in PSPACE.

References

  1. 1.
    Anderson, H., Khoo, S.-C.: Affine-based size-change termination. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 122–140. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  2. 2.
    Ben-Amram, A.M.: A complexity tradeoff in ranking-function termination proofs. Acta Inf. 46(1), 57–72 (2009)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ben-Amram, A.M.: Monotonicity constraints for termination in the integer domain. Logical Methods Comput. Sci. 7(3), 1–43 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ben-Amram, A.M., Lee, C.S.: Ranking functions for size-change termination ii. Logical Methods Comput. Sci. 5(2), 1–29 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Codish, M., Fuhs, C., Giesl, J., Schneider-Kamp, P.: Lazy abstraction for size-change termination. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 217–232. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  6. 6.
    Colcombet, T., Daviaud, L., Zuleger, F.: Size-change abstraction and max-plus automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 208–219. Springer, Heidelberg (2014) Google Scholar
  7. 7.
    Krauss, A.: Certified size-change termination. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 460–475. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  8. 8.
    Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: POPL, pp. 81–92 (2001)Google Scholar
  9. 9.
    Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  10. 10.
    Vidal, G.: Quasi-terminating logic programs for ensuring the termination of partial evaluation. In: PEPM, pp. 51–60 (2007)Google Scholar
  11. 11.
    Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative programs with the size-change abstraction. In: Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 280–297. Springer, Heidelberg (2011) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Vienna University of TechnologyViennaAustria

Personalised recommendations