Circuit Complexity Meets Ontology-Based Data Access

  • Vladimir V. Podolskii
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9139)


Ontology-based data access is an approach to organizing access to a database augmented with a logical theory. In this approach query answering proceeds through a reformulation of a given query into a new one which can be answered without any use of theory. Thus the problem reduces to the standard database setting.

However, the size of the query may increase substantially during the reformulation. In this survey we review a recently developed framework on proving lower and upper bounds on the size of this reformulation by employing methods and results from Boolean circuit complexity.


These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is grateful to Michael Zakharyaschev, Mikhail Vyalyi, Evgeny Zolin and Stanislav Kikot for helpful comments on the preliminary version of this survey.


  1. 1.
    Alon, N., Boppana, R.: The monotone circuit complexity of Boolean functions. Combinatorica 7(1), 1–22 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Baget, J.-F., Leclère, M., Mugnier, M.-L., Salvat, E.: Extending decidable cases for rules with existential variables. In: Proceedings of the 21st Int. Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 677–682. IJCAI (2009)Google Scholar
  4. 4.
    Bienvenu, M., Kikot, S., Podolskii, V.V.: Succinctness of query rewriting in OWL 2 QL: the case of tree-like queries. In: Informal Proceedings of the 27th International Workshop on Description Logics, Vienna, Austria, 17–20 July 2014, pp. 45–57 (2014)Google Scholar
  5. 5.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query answering over ontologies. J. Web Semant. 14, 57–83 (2012)CrossRefGoogle Scholar
  6. 6.
    Calì, A., Gottlob, G., Pieris, A.: advanced processing for ontological queries. In: PVLDB, vol. 3(1), pp. 554–565 (2010)Google Scholar
  7. 7.
    Calì, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the query answering problem. Artif. Intell. 193, 87–128 (2012)zbMATHCrossRefGoogle Scholar
  8. 8.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable description logics for ontologies. In: Proceedings of the 20th National Conference on Artificial Intelligence (AAAI 2005), pp. 602–607. AAAI Press (2005)Google Scholar
  9. 9.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reasoning 39(3), 385–429 (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun, X.: Scalable grounded conjunctive query evaluation over large and expressive knowledge bases. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 403–418. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  11. 11.
    Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V.V., Schwentick, T., Zakharyaschev, M.: The price of query rewriting in ontology-based data access. Artif. Intell. 213, 42–59 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., Pan, Y., Mei, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., Feier, C., Hench, G., Wetzstein, B., Keller, U.: Ontology reasoning with large data repositories. In: Ontology Management, Semantic Web, Semantic Web Services, and Business Applications, volume 7 of Semantic Web and Beyond, pp. 89–128. Springer, Heidelberg 2008Google Scholar
  13. 13.
    Jukna, S.: Boolean Function Complexity: Advances and Frontiers. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-logarithmic depth. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC’88), pp. 539–550. ACM (1988)Google Scholar
  15. 15.
    Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: Exponential lower bounds and separation for query rewriting. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 263–274. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  16. 16.
    Kikot, S., Kontchakov, R., Podolskii, V.V., Zakharyaschev, M.: On the succinctness of query rewriting over shallow ontologies. In: Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS 2014, Vienna, Austria, July 14–18, 2014, p. 57 (2014)Google Scholar
  17. 17.
    Kikot, S., Kontchakov, R., Zakharyaschev, M.: On (in)tractability of OBDA with OWL 2 QL. In: Proceedings of the 24th International Workshop on Description Logics (DL 2011), Barcelona, Spain, 13–16 July 2011 (2011)Google Scholar
  18. 18.
    Kontchakov, R., Zakharyaschev, M.: An introduction to description logics and query rewriting. In: Koubarakis, M., Stamou, G., Stoilos, G., Horrocks, I., Kolaitis, P., Lausen, G., Weikum, G. (eds.) Reasoning Web. LNCS, vol. 8714, pp. 195–244. Springer, Heidelberg (2014) Google Scholar
  19. 19.
    Kowalski, R.A.: The early years of logic programming. Commun. ACM 31(1), 38–43 (1988)CrossRefGoogle Scholar
  20. 20.
    Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Language profiles. W3C Recommendation, 11 December 2012.
  21. 21.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)Google Scholar
  22. 22.
    Razborov, A.: Lower bounds for the monotone complexity of some Boolean functions. Dokl. Akad. Nauk SSSR 281(4), 798–801 (1985)MathSciNetGoogle Scholar
  23. 23.
    Razborov, A.: Lower bounds for deterministic and nondeterministic branching programs. Fundamentals of Computation Theory, vol. 529, pp. 47–60. Springer, Heidelberg (1991) CrossRefGoogle Scholar
  24. 24.
    Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, Heidelberg (1999) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations