Skip to main content

Leukocytosis: Eosinophilia

  • Chapter
  • First Online:

Abstract

A normal peripheral blood level of eosinophils ranges between 0.0 and 6.0% of leukocyte with an absolute count of 0.05–0.5 × 109/L. The normal range for eosinophils in bone marrow aspirates is 1–6%, but this percentage is less reproducible in clot or core biopsy specimens. Eosinophilia is the increase of eosinophils in the peripheral blood or tissues above what is considered the normal range. The peripheral blood threshold for eosinophilia of clinical significance is ≥1.5 × 109/L [1]. This threshold applies to both reactive and neoplastic processes alike and it has been used in the diagnosis of a variety of disorders. Above this threshold, eosinophilia is usually associated with skin rash or autonomic symptoms such as bronchoconstriction. A definition of bone marrow eosinophilia has been suggested when ≥20% of marrow cells are eosinophils, with or without peripheral blood eosinophilia [2, 3]. In extramedullary sites such as the gastrointestinal tract mucosa, thymus, spleen, or lymph nodes, scattered eosinophils are normally found; tissue eosinophilia is based on a level above what is expected, except for certain specific diseases, such as eosinophilic esophagitis, which have defined levels of tissue eosinophilia.

This is a preview of subscription content, log in via an institution.

References

  1. Gotlib J. World Health Organization-defined eosinophilic disorders: 2015 update on diagnosis, risk stratification, and management. Am J Hematol. 2015;90:1077–89.

    Article  PubMed  CAS  Google Scholar 

  2. Valent P, Klion AD, Horny HP, et al. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol. 2012;130:607–12.e9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia. Blood. 2017;129:704–14.

    Article  PubMed  CAS  Google Scholar 

  4. Gleich GJ. Mechanisms of eosinophil-associated inflammation. J Allergy Clin Immunol. 2000;105:651–63.

    Article  PubMed  CAS  Google Scholar 

  5. Bain BJ, Horny H-P, Arber DA, Tefferi A, Hasserjian RP. Myeloid/lymphoid neoplasms with eosinophilia and rearrangements of PDGFRA, PDGFRB or FGFR1, or with PCM1-JAK2. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J. (eds.). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). Lyon: IARC; 2017:72–9.

    Google Scholar 

  6. Vega F, Medeiros LJ, Bueso-Ramos CE, Arboleda P, Miranda RN. Hematolymphoid neoplasms associated with rearrangements of PDGFRA, PDGFRB, and FGFR1. Am J Clin Pathol. 2015;144:377–92.

    Article  PubMed  CAS  Google Scholar 

  7. Jackson CC, Medeiros LJ, Miranda RN. 8p11 myeloproliferative syndrome: a review. Hum Pathol. 2010;41:461–76.

    Article  PubMed  CAS  Google Scholar 

  8. Catovsky D, Bernasconi C, Verdonck PJ, et al. The association of eosinophilia with lymphoblastic leukaemia or lymphoma: a study of seven patients. Br J Haematol. 1980;45:523–34.

    Article  PubMed  CAS  Google Scholar 

  9. Kawasaki A, Mizushima Y, Matsui S, Hoshino K, Yano S, Kitagawa M. A case of T-cell lymphoma accompanying marked eosinophilia, chronic eosinophilic pneumonia and eosinophilic pleural effusion. A case report. Tumori. 1991;77:527–30.

    Article  PubMed  CAS  Google Scholar 

  10. Jin JJ, Butterfield JH, Weiler CR. Hematologic malignancies identified in patients with hypereosinophilia and hypereosinophilic syndromes. J Allergy Clin Immunol Pract. 2015;3:920–5.

    Article  PubMed  Google Scholar 

  11. Endo M, Usuki K, Kitazume K, Iwabe K, Okuyama Y, Urabe A. Hypereosinophilic syndrome in Hodgkin’s disease with increased granulocyte-macrophage colony-stimulating factor. Ann Hematol. 1995;71:313–4.

    Article  PubMed  CAS  Google Scholar 

  12. Bank I, Amariglio N, Reshef A, et al. The hypereosinophilic syndrome associated with CD4+CD3- helper type 2 (Th2) lymphocytes. Leuk Lymphoma. 2001;42:123–33.

    Article  PubMed  Google Scholar 

  13. Simon HU, Plotz SG, Dummer R, Blaser K. Abnormal clones of T cells producing interleukin-5 in idiopathic eosinophilia. N Engl J Med. 1999;341:1112–20.

    Article  PubMed  CAS  Google Scholar 

  14. Walker S, Wang C, Walradt T, et al. Identification of a gain-of-function STAT3 mutation (p.Y640F) in lymphocytic variant hypereosinophilic syndrome. Blood. 2016;127:948–51.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lefevre G, Copin MC, Staumont-Salle D, et al. The lymphoid variant of hypereosinophilic syndrome: study of 21 patients with CD3-CD4+ aberrant T-cell phenotype. Medicine (Baltimore). 2014;93:255–66.

    Article  CAS  Google Scholar 

  16. Loghavi S, Wang SA, Medeiros LJ, et al. Immunophenotypic and diagnostic characterization of angioimmunoblastic T-cell lymphoma by advanced flow cytometric technology. Leuk Lymphoma. 2016;57(12):2804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lefevre G, Copin MC, Roumier C, et al. CD3-CD4+ lymphoid variant of hypereosinophilic syndrome: nodal and extranodal histopathological and immunophenotypic features of a peripheral indolent clonal T-cell lymphoproliferative disorder. Haematologica. 2015;100:1086–95.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Bain BJ, Horny, H-P, Hasserjian RP, Orazi A. Chronic eosinophilic leukemia, NOS. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J. (eds.). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). Lyon: IARC; 2017:54–6.

    Google Scholar 

  19. Weller PF, Bubley GJ. The idiopathic hypereosinophilic syndrome. Blood. 1994;83:2759–79.

    Article  PubMed  CAS  Google Scholar 

  20. Cargo CA, Rowbotham N, Evans PA, et al. Targeted sequencing identifies patients with preclinical MDS at high risk of disease progression. Blood. 2015;126:2362–5.

    Article  PubMed  CAS  Google Scholar 

  21. Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Crane MM, Chang CM, Kobayashi MG, Weller PF. Incidence of myeloproliferative hypereosinophilic syndrome in the United States and an estimate of all hypereosinophilic syndrome incidence. J Allergy Clin Immunol. 2010;126:179–81.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang SA, Tam W, Tsai AG, et al. Targeted next-generation sequencing identifies a subset of idiopathic hypereosinophilic syndrome with features similar to chronic eosinophilic leukemia, not otherwise specified. Mod Pathol. 2016;29:854–64.

    Article  PubMed  CAS  Google Scholar 

  24. Ogbogu PU, Bochner BS, Butterfield JH, et al. Hypereosinophilic syndrome: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J Allergy Clin Immunol. 2009;124:1319–25.e3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Podjasek JC, Butterfield JH. Mortality in hypereosinophilic syndrome: 19 years of experience at Mayo Clinic with a review of the literature. Leuk Res. 2013;37:392–5.

    Article  PubMed  Google Scholar 

  26. Lefebvre C, Bletry O, Degoulet P, et al. Prognostic factors of hypereosinophilic syndrome. Study of 40 cases. Ann Med Interne (Paris). 1989;140:253–7.

    CAS  Google Scholar 

  27. Bain BJ. Eosinophilic leukaemias and the idiopathic hypereosinophilic syndrome. Br J Haematol. 1996;95:2–9.

    PubMed  CAS  Google Scholar 

  28. Gotlib J, Cools J, Malone JM 3rd, Schrier SL, Gilliland DG, Coutre SE. The FIP1L1-PDGFRalpha fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: implications for diagnosis, classification, and management. Blood. 2004;103:2879–91.

    Article  PubMed  CAS  Google Scholar 

  29. Matsushima T, Handa H, Yokohama A, et al. Prevalence and clinical characteristics of myelodysplastic syndrome with bone marrow eosinophilia or basophilia. Blood. 2003;101:3386–90.

    Article  PubMed  CAS  Google Scholar 

  30. Miranda RN, Esparza AR, Sambandam S, Medeiros LJ. Systemic mast cell disease presenting with peripheral blood eosinophilia. Hum Pathol. 1994;25:727–30.

    Article  PubMed  CAS  Google Scholar 

  31. Pardanani A, Lim KH, Lasho TL, et al. Prognostically relevant breakdown of 123 patients with systemic mastocytosis associated with other myeloid malignancies. Blood. 2009;114:3769–72.

    Article  PubMed  CAS  Google Scholar 

  32. Pardanani A. Systemic mastocytosis in adults: 2015 update on diagnosis, risk stratification, and management. Am J Hematol. 2015;90:250–62.

    Article  PubMed  CAS  Google Scholar 

  33. Gotlib J, Cools J. Five years since the discovery of FIP1L1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia. 2008;22:1999–2010.

    Article  PubMed  CAS  Google Scholar 

  34. Vandenberghe P, Wlodarska I, Michaux L, et al. Clinical and molecular features of FIP1L1-PDFGRA (+) chronic eosinophilic leukemias. Leukemia. 2004;18:734–42.

    Article  PubMed  CAS  Google Scholar 

  35. Metzgeroth G, Walz C, Score J, et al. Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia. 2007;21:1183–8.

    Article  PubMed  CAS  Google Scholar 

  36. Schwaab J, Jawhar M, Naumann N, et al. Diagnostic challenges in the work up of hypereosinophilia: pitfalls in bone marrow core biopsy interpretation. Ann Hematol. 2016;95:557–62.

    Article  PubMed  CAS  Google Scholar 

  37. Cools J, DeAngelo DJ, Gotlib J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003;348:1201–14.

    Article  PubMed  CAS  Google Scholar 

  38. La Starza R, Specchia G, Cuneo A, et al. The hypereosinophilic syndrome: fluorescence in situ hybridization detects the del(4)(q12)-FIP1L1/PDGFRA but not genomic rearrangements of other tyrosine kinases. Haematologica. 2005;90:596–601.

    PubMed  Google Scholar 

  39. Pardanani A, Ketterling RP, Li CY, et al. FIP1L1-PDGFRA in eosinophilic disorders: prevalence in routine clinical practice, long-term experience with imatinib therapy, and a critical review of the literature. Leuk Res. 2006;30:965–70.

    Article  PubMed  CAS  Google Scholar 

  40. Lierman E, Michaux L, Beullens E, et al. FIP1L1-PDGFRalpha D842V, a novel panresistant mutant, emerging after treatment of FIP1L1-PDGFRalpha T674I eosinophilic leukemia with single agent sorafenib. Leukemia. 2009;23:845–51.

    Article  PubMed  CAS  Google Scholar 

  41. SQ Q, Qin TJ, ZF X, et al. Long-term outcomes of imatinib in patients with FIP1L1/ PDGFRA associated chronic eosinophilic leukemia: experience of a single center in China. Oncotarget. 2016;7:33229–36.

    Article  Google Scholar 

  42. Baccarani M, Cilloni D, Rondoni M, et al. The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica. 2007;92(9):1173.

    Article  PubMed  CAS  Google Scholar 

  43. Montano-Almendras CP, Essaghir A, Schoemans H, et al. ETV6-PDGFRB and FIP1L1-PDGFRA stimulate human hematopoietic progenitor cell proliferation and differentiation into eosinophils: the role of nuclear factor-kappaB. Haematologica. 2012;97:1064–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Arefi M, Garcia JL, Penarrubia MJ, et al. Incidence and clinical characteristics of myeloproliferative neoplasms displaying a PDGFRB rearrangement. Eur J Haematol. 2012;89:37–41.

    Article  PubMed  CAS  Google Scholar 

  45. David M, Cross NC, Burgstaller S, et al. Durable responses to imatinib in patients with PDGFRB fusion gene-positive and BCR-ABL-negative chronic myeloproliferative disorders. Blood. 2007;109:61–4.

    Article  PubMed  CAS  Google Scholar 

  46. Steer EJ, Cross NC. Myeloproliferative disorders with translocations of chromosome 5q31-35: role of the platelet-derived growth factor receptor Beta. Acta Haematol. 2002;107:113–22.

    Article  PubMed  CAS  Google Scholar 

  47. Lierman E, Cools J. TV6 and PDGFRB: a license to fuse. Haematologica. 2007;92:145–7.

    Article  PubMed  CAS  Google Scholar 

  48. Ondrejka SL, Jegalian AG, Kim AS, et al. PDGFRB-rearranged T-lymphoblastic leukemia/lymphoma occurring with myeloid neoplasms: the missing link supporting a stem cell origin. Haematologica. 2014;99:e148–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Cain JA, Xiang Z, O'Neal J, et al. Myeloproliferative disease induced by TEL-PDGFRB displays dynamic range sensitivity to Stat5 gene dosage. Blood. 2007;109:3906–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Apperley JF, Gardembas M, Melo JV, et al. Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med. 2002;347(7):481.

    Article  PubMed  CAS  Google Scholar 

  51. Vega F, Medeiros LJ, Davuluri R, Cromwell CC, Alkan S, Abruzzo LV. t(8;13)-positive bilineal lymphomas: report of 6 cases. Am J Surg Pathol. 2008;32:14–20.

    Article  PubMed  Google Scholar 

  52. Macdonald D, Aguiar RC, Mason PJ, Goldman JM, Cross NC. A new myeloproliferative disorder associated with chromosomal translocations involving 8p11: a review. Leukemia. 1995;9:1628–30.

    PubMed  CAS  Google Scholar 

  53. Miranda RN, Medeiros LJ. Blastic T/Myeloid neoplasm associated with ZMYM2-FGFR1. In: Medeiros LJ, Miranda RN, (eds.). Diagnostic Pathology: Lymph Nodes and Extranodal Lymphomas. Second ed. Salt Lake City, UT: Elsevier; 2018:802–11.

    Google Scholar 

  54. Abruzzo LV, Jaffe ES, Cotelingam JD, Whang-Peng J, Del Duca V Jr, Medeiros LJ. T-cell lymphoblastic lymphoma with eosinophilia associated with subsequent myeloid malignancy. Am J Surg Pathol. 1992;16:236–45.

    Article  PubMed  CAS  Google Scholar 

  55. Wang W, Tang G, Kadia T, et al. Cytogenetic evolution associated with disease progression in hematopoietic neoplasms with t(8;22)(p11;q11)/BCR-FGFR1 rearrangement. J Natl Compr Cancer Netw. 2016;14:708–11.

    Article  CAS  Google Scholar 

  56. Montenegro-Garreaud X, Miranda RN, Reynolds A, et al. Myeloproliferative neoplasms with t(8;22)(p11.2;q11.2)/BCR-FGFR1: a meta-analysis of 20 cases shows cytogenetic progression with B-lymphoid blast phase. Hum Pathol. 2017;65:147–56.

    Article  PubMed  CAS  Google Scholar 

  57. Reiter A, Walz C, Watmore A, et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Res. 2005;65(7):2662.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto N. Miranda M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miranda, R.N., Wang, S.A. (2018). Leukocytosis: Eosinophilia. In: Wang, S., Hasserjian, R. (eds) Diagnosis of Blood and Bone Marrow Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-20279-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20279-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20278-5

  • Online ISBN: 978-3-319-20279-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics