Advertisement

B-Cell Lymphocytosis

  • Robert P. Hasserjian
Chapter

Abstract

Evaluation of the peripheral blood (typically including flow cytometry immunophenotyping) and/or bone marrow is often the initial testing used to make a diagnosis of many B-cell lymphomas. This chapter presents the features and differential diagnoses of B-cell lymphomas that are primarily diagnosed by evaluating blood and bone marrow samples, as well as reactive B-cell proliferations in the bone marrow and blood. The chapter will not discuss bone marrow staging of B-cell and Hodgkin lymphomas that have already been diagnosed in extramedullary tissues.

References

  1. 1.
    Morbach H, Eichhorn EM, Liese JG, Girschick HJ. Reference values for B cell subpopulations from infancy to adulthood. Clin Exp Immunol. 2010;162(2):271–9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bernstein L, Newton P, Ross RK. Epidemiology of hairy cell leukemia in Los Angeles County. Cancer Res. 1990;50(12):3605–9.PubMedGoogle Scholar
  3. 3.
    Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE. Identification and characterization of circulating human transitional B cells. Blood. 2005;105(11):4390–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Medina F, Segundo C, Campos-Caro A, Gonzalez-Garcia I, Brieva JA. The heterogeneity shown by human plasma cells from tonsil, blood, and bone marrow reveals graded stages of increasing maturity, but local profiles of adhesion molecule expression. Blood. 2002;99(6):2154–61.PubMedCrossRefGoogle Scholar
  5. 5.
    Caraux A, Klein B, Paiva B, Bret C, Schmitz A, Fuhler GM, Bos NA, Johnsen HE, Orfao A, Perez-Andres M, et al. Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138- and CD138+ plasma cells. Haematologica. 2010;95(6):1016–20.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kipps TJ. The CD5 B cell. Adv Immunol. 1989;47:117–85.PubMedCrossRefGoogle Scholar
  7. 7.
    Gupta R, Jain P, Deo SV, Sharma A. Flow cytometric analysis of CD5+ B cells: a frame of reference for minimal residual disease analysis in chronic lymphocytic leukemia. Am J Clin Pathol. 2004;121(3):368–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Gordon DS, Jones BM, Browning SW, Spira TJ, Lawrence DN. Persistent polyclonal lymphocytosis of B lymphocytes. N Engl J Med. 1982;307(4):232–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Carstairs KC, Francombe WH, Scott JG, Gelfand EW. Persistent polyclonal lymphocytosis of B lymphocytes, induced by cigarette smoking? Lancet. 1985;1(8437):1094.PubMedCrossRefGoogle Scholar
  10. 10.
    Agrawal S, Matutes E, Voke J, Dyer MJ, Khokhar T, Catovsky D. Persistent polyclonal B-cell lymphocytosis. Leuk Res. 1994;18(10):791–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Troussard X, Mossafa H, Valensi F, Maynadie M, Schillinger F, Bulliard G, Malaure H, Flandrin G. Polyclonal lymphocytosis with binucleated lymphocytes. Morphological, immunological, cytogenetic and molecular analysis in 15 cases. Presse Med. 1997;26(19):895–9.PubMedGoogle Scholar
  12. 12.
    Loembe MM, Neron S, Delage R, Darveau A. Analysis of expressed V(H) genes in persistent polyclonal B cell lymphocytosis reveals absence of selection in CD27+IgM+IgD+ memory B cells. Eur J Immunol. 2002;32(12):3678–88.PubMedCrossRefGoogle Scholar
  13. 13.
    Dugas-Bourdages E, Neron S, Roy A, Darveau A, Delage R. Persistent polyclonal B cell lymphocytosis B cells can be activated through CD40-CD154 interaction. Adv Hematol. 2014;2014:854124.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Deplano S, Nadal-Melsio E, Bain BJ. Persistent polyclonal B lymphocytosis. Am J Hematol. 2014;89(2):224.PubMedCrossRefGoogle Scholar
  15. 15.
    Troussard X, Cornet E, Lesesve JF, Kourel C, Mossafa H. Polyclonal B-cell lymphocytosis with binucleated lymphocytes (PPBL). Onco Targets Ther. 2008;1:59–66.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Callet-Bauchu E, Renard N, Gazzo S, Poncet C, Morel D, Pages J, Salles G, Coeur P, Felman P. Distribution of the cytogenetic abnormality +i(3)(q10) in persistent polyclonal B-cell lymphocytosis: a FICTION study in three cases. Br J Haematol. 1997;99(3):531–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Kay NE, Leong T, Kyle RA, Greipp P, Billadeau D, Van Ness B, Bone N, Oken MM. Circulating blood B cells in multiple myeloma: analysis and relationship to circulating clonal cells and clinical parameters in a cohort of patients entered on the Eastern Cooperative Oncology Group phase III E9486 clinical trial. Blood. 1997;90(1):340–5.PubMedGoogle Scholar
  18. 18.
    Kirkpatrick JA Jr, DiGeorge AM. Congenital absence of the thymus. Am J Roentgenol Radium Ther Nucl Med. 1968;103(1):32–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Klocperk A, Mejstrikova E, Kayserova J, Kalina T, Sediva A. Low marginal zone-like B lymphocytes and natural antibodies characterize skewed B-lymphocyte subpopulations in del22q11 DiGeorge patients. Clin Immunol. 2015;161(2):144–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Frater JL, McCarron KF, Hammel JP, Shapiro JL, Miller ML, Tubbs RR, Pettay J, Hsi ED. Typical and atypical chronic lymphocytic leukemia differ clinically and immunophenotypically. Am J Clin Pathol. 2001;116(5):655–64.PubMedCrossRefGoogle Scholar
  21. 21.
    Montserrat E, Villamor N, Reverter JC, Brugues RM, Tassies D, Bosch F, Aguilar JL, Vives-Corrons JL, Rozman M, Rozma C. Bone marrow assessment in B-cell chronic lymphocytic leukaemia: aspirate or biopsy? A comparative study in 258 patients. Br J Haematol. 1996;93(1):111–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Thiele J, Zirbes TK, Kvasnicka HM, Fischer R. Focal lymphoid aggregates (nodules) in bone marrow biopsies: differentiation between benign hyperplasia and malignant lymphoma: a practical guideline. J Clin Pathol. 1999;52(4):294–300.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Bergmann MA, Eichhorst BF, Busch R, Adorf D, Stilgenbauer S, Eckart MJ, Wendtner C-M, Hallek M. Prospective evaluation of prognostic parameters in early stage chronic lymphocytic leukemia (CLL): results of the CLL1-protocol of the German CLL Study Group (GCLLSG). Blood. 2007;110(11):165.Google Scholar
  24. 24.
    Henrique R, Achten R, Maes B, Verhoef G, De Wolf-Peeters C. Guidelines for subtyping small B-cell lymphomas in bone marrow biopsies. Virchows Arch. 1999;435(6):549–58.PubMedCrossRefGoogle Scholar
  25. 25.
    Carulli G, Stacchini A, Marini A, Ciriello MM, Zucca A, Cannizzo E, Aliberti S, Demurtas A, Novero D, Calcagno L, et al. Aberrant expression of CD8 in B-cell non-Hodgkin lymphoma: a multicenter study of 951 bone marrow samples with lymphomatous infiltration. Am J Clin Pathol. 2009;132(2):186–90. quiz 306PubMedCrossRefGoogle Scholar
  26. 26.
    Sandes AF, de Lourdes CM, Oliveira CR, Maekawa Y, Tamashiro N, Takao TT, Ritter EC, Rizzatti EG. CD200 has an important role in the differential diagnosis of mature B-cell neoplasms by multiparameter flow cytometry. Cytometry B Clin Cytom. 2014;86(2):98–105.PubMedCrossRefGoogle Scholar
  27. 27.
    Morice WG, Kurtin PJ, Hodnefield JM, Shanafelt TD, Hoyer JD, Remstein ED, Hanson CA. Predictive value of blood and bone marrow flow cytometry in B-cell lymphoma classification: comparative analysis of flow cytometry and tissue biopsy in 252 patients. Mayo Clin Proc. 2008;83(7):776–85.PubMedCrossRefGoogle Scholar
  28. 28.
    Kremer M, Quintanilla-Martinez L, Nahrig J, von Schilling C, Fend F. Immunohistochemistry in bone marrow pathology: a useful adjunct for morphologic diagnosis. Virchows Arch. 2005;447(6):920–37.PubMedCrossRefGoogle Scholar
  29. 29.
    Tandon B, Peterson L, Gao J, Nelson B, Ma S, Rosen S, Chen YH. Nuclear overexpression of lymphoid-enhancer-binding factor 1 identifies chronic lymphocytic leukemia/small lymphocytic lymphoma in small B-cell lymphomas. Mod Pathol. 2011;24(11):1433–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, Hillmen P, Keating MJ, Montserrat E, Rai KR, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M, Lichter P. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, Kluth S, Bozic I, Lawrence M, Bottcher S, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525–30.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011;365(26):2497–506.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG, Neuberg DS, Flinn IW, Rai KR, Byrd JC, et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med. 2004;351(9):893–901.PubMedCrossRefGoogle Scholar
  35. 35.
    Hamblin TJ, Orchard JA, Ibbotson RE, Davis Z, Thomas PW, Stevenson FK, Oscier DG. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood. 2002;99(3):1023–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Challagundla P, Medeiros LJ, Kanagal-Shamanna R, Miranda RN, Jorgensen JL. Differential expression of CD200 in B-cell neoplasms by flow cytometry can assist in diagnosis, subclassification, and bone marrow staging. Am J Clin Pathol. 2014;142(6):837–44.PubMedCrossRefGoogle Scholar
  37. 37.
    O'Malley DP, Vance GH, Orazi A. Chronic lymphocytic leukemia/small lymphocytic lymphoma with trisomy 12 and focal cyclin d1 expression: a potential diagnostic pitfall. Arch Pathol Lab Med. 2005;129(1):92–5.PubMedGoogle Scholar
  38. 38.
    Rawstron AC, Bennett FL, O'Connor SJ, Kwok M, Fenton JA, Plummer M, de Tute R, Owen RG, Richards SJ, Jack AS, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359(6):575–83.PubMedCrossRefGoogle Scholar
  39. 39.
    Karube K, Scarfo L, Campo E, Ghia P. Monoclonal B cell lymphocytosis and “in situ” lymphoma. Semin Cancer Biol. 2014;24:3–14.PubMedCrossRefGoogle Scholar
  40. 40.
    Randen U, Tierens AM, Tjonnfjord GE, Delabie J. Bone marrow histology in monoclonal B-cell lymphocytosis shows various B-cell infiltration patterns. Am J Clin Pathol. 2013;139(3):390–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Krishnan B, Matutes E, Dearden C. Prolymphocytic leukemias. Semin Oncol. 2006;33(2):257–63.PubMedCrossRefGoogle Scholar
  42. 42.
    Del Giudice I, Davis Z, Matutes E, Osuji N, Parry-Jones N, Morilla A, Brito-Babapulle V, Oscier D, Catovsky D. IgVH genes mutation and usage, ZAP-70 and CD38 expression provide new insights on B-cell prolymphocytic leukemia (B-PLL). Leukemia. 2006;20(7):1231–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Matutes E. Immunophenotyping and differential diagnosis of hairy cell leukemia. Hematol Oncol Clin North Am. 2006;20(5):1051–63.PubMedCrossRefGoogle Scholar
  44. 44.
    Ya-In C, Brandwein J, Pantalony D, Chang H. Hairy cell leukemia variant with features of intrasinusoidal bone marrow involvement. Arch Pathol Lab Med. 2005;129(3):395–8.PubMedGoogle Scholar
  45. 45.
    Cohen PL, Kurtin PJ, Donovan KA, Hanson CA. Bone marrow and peripheral blood involvement in mantle cell lymphoma. Br J Haematol. 1998;101(2):302–10.PubMedCrossRefGoogle Scholar
  46. 46.
    Matutes E, Parry-Jones N, Brito-Babapulle V, Wotherspoon A, Morilla R, Atkinson S, Elnenaei MO, Jain P, Giustolisi GM, A'Hern RP, et al. The leukemic presentation of mantle-cell lymphoma: disease features and prognostic factors in 58 patients. Leuk Lymphoma. 2004;45(10):2007–15.PubMedCrossRefGoogle Scholar
  47. 47.
    Espinet B, Ferrer A, Bellosillo B, Nonell L, Salar A, Fernandez-Rodriguez C, Puigdecanet E, Gimeno J, Garcia-Garcia M, Vela MC, et al. Distinction between asymptomatic monoclonal B-cell lymphocytosis with cyclin D1 overexpression and mantle cell lymphoma: from molecular profiling to flow cytometry. Clin Cancer Res. 2014;20(4):1007–19.PubMedCrossRefGoogle Scholar
  48. 48.
    Fernandez V, Salamero O, Espinet B, Sole F, Royo C, Navarro A, Camacho F, Bea S, Hartmann E, Amador V, et al. Genomic and gene expression profiling defines indolent forms of mantle cell lymphoma. Cancer Res. 2010;70(4):1408–18.PubMedCrossRefGoogle Scholar
  49. 49.
    Bernard M, Gressin R, Lefrere F, Drenou B, Branger B, Caulet-Maugendre S, Tass P, Brousse N, Valensi F, Milpied N, et al. Blastic variant of mantle cell lymphoma: a rare but highly aggressive subtype. Leukemia. 2001;15(11):1785–91.PubMedCrossRefGoogle Scholar
  50. 50.
    Schenka AA, Gascoyne RD, Duchayne E, Delsol G, Brousset P. Prominent intrasinusoidal infiltration of the bone marrow by mantle cell lymphoma. Hum Pathol. 2003;34(8):789–91.PubMedCrossRefGoogle Scholar
  51. 51.
    Mozos A, Royo C, Hartmann E, De Jong D, Baro C, Valera A, Fu K, Weisenburger DD, Delabie J, Chuang SS, et al. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica. 2009;94(11):1555–62.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Nakashima MO, Durkin L, Bodo J, Lin J, Quintanilla-Martinez L, Fu K, Hsi ED. Utility and diagnostic pitfalls of SOX11 monoclonal antibodies in mantle cell lymphoma and other lymphoproliferative disorders. Appl Immunohistochem Mol Morphol. 2014;22(10):720–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Salaverria I, Royo C, Carvajal-Cuenca A, Clot G, Navarro A, Valera A, Song JY, Woroniecka R, Rymkiewicz G, Klapper W, et al. CCND2 rearrangements are the most frequent genetic events in cyclin D1(−) mantle cell lymphoma. Blood. 2013;121(8):1394–402.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Frassoldati A, Lamparelli T, Federico M, Annino L, Capnist G, Pagnucco G, Dini E, Resegotti L, Damasio EE, Silingardi V. Hairy cell leukemia: a clinical review based on 725 cases of the Italian Cooperative Group (ICGHCL). Italian Cooperative Group for Hairy Cell Leukemia. Leuk Lymphoma. 1994;13(3–4):307–16.PubMedCrossRefGoogle Scholar
  55. 55.
    Flandrin G, Sigaux F, Sebahoun G, Bouffette P. Hairy cell leukemia: clinical presentation and follow-up of 211 patients. Semin Oncol. 1984;11(4 Suppl 2):458–71.PubMedGoogle Scholar
  56. 56.
    Dasanu CA, Ichim TE, Alexandrescu DT. Inherent and iatrogenic immune defects in hairy cell leukemia: revisited. Expert Opin Drug Saf. 2010;9(1):55–64.PubMedCrossRefGoogle Scholar
  57. 57.
    Golomb HM. Hairy cell leukemia: an unusual lymphoproliferative disease: a study of 24 patients. Cancer. 1978;42(2 Suppl):946–56.PubMedCrossRefGoogle Scholar
  58. 58.
    Humphries JE. Dry tap bone marrow aspiration: clinical significance. Am J Hematol. 1990;35(4):247–50.PubMedCrossRefGoogle Scholar
  59. 59.
    Bouroncle BA. Thirty-five years in the progress of hairy cell leukemia. Leuk Lymphoma. 1994;14(Suppl 1):1–12.PubMedGoogle Scholar
  60. 60.
    Sharpe RW, Bethel KJ. Hairy cell leukemia: diagnostic pathology. Hematol Oncol Clin North Am. 2006;20(5):1023–49.PubMedCrossRefGoogle Scholar
  61. 61.
    Lee WM, Beckstead JH. Hairy cell leukemia with bone marrow hypoplasia. Cancer. 1982;50(10):2207–10.PubMedCrossRefGoogle Scholar
  62. 62.
    Pittaluga S, Verhoef G, Maes A, Boogaerts MA, De Wolf-Peeters C. Bone marrow trephines. Findings in patients with hairy cell leukaemia before and after treatment. Histopathology. 1994;25(2):129–35.PubMedCrossRefGoogle Scholar
  63. 63.
    Burthem J, Cawley JC. The bone marrow fibrosis of hairy-cell leukemia is caused by the synthesis and assembly of a fibronectin matrix by the hairy cells. Blood. 1994;83(2):497–504.PubMedGoogle Scholar
  64. 64.
    Chen YH, Tallman MS, Goolsby C, Peterson L. Immunophenotypic variations in hairy cell leukemia. Am J Clin Pathol. 2006;125(2):251–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Jasionowski TM, Hartung L, Greenwood JH, Perkins SL, Bahler DW. Analysis of CD10+ hairy cell leukemia. Am J Clin Pathol. 2003;120(2):228–35.PubMedCrossRefGoogle Scholar
  66. 66.
    Del Giudice I, Matutes E, Morilla R, Morilla A, Owusu-Ankomah K, Rafiq F, A'Hern R, Delgado J, Bazerbashi MB, Catovsky D. The diagnostic value of CD123 in B-cell disorders with hairy or villous lymphocytes. Haematologica. 2004;89(3):303–8.PubMedGoogle Scholar
  67. 67.
    Miranda RN, Briggs RC, Kinney MC, Veno PA, Hammer RD, Cousar JB. Immunohistochemical detection of cyclin D1 using optimized conditions is highly specific for mantle cell lymphoma and hairy cell leukemia. Mod Pathol. 2000;13(12):1308–14.PubMedCrossRefGoogle Scholar
  68. 68.
    Brito-Babapulle V, Matutes E, Oscier D, Mould S, Catovsky D. Chromosome abnormalities in hairy cell leukaemia variant. Genes Chromosomes Cancer. 1994;10(3):197–202.PubMedCrossRefGoogle Scholar
  69. 69.
    Andrulis M, Penzel R, Weichert W, von Deimling A, Capper D. Application of a BRAF V600E mutation-specific antibody for the diagnosis of hairy cell leukemia. Am J Surg Pathol. 2012;36(12):1796–800.PubMedCrossRefGoogle Scholar
  70. 70.
    Brown NA, Betz BL, Weigelin HC, Elenitoba-Johnson KS, Lim MS, Bailey NG. Evaluation of allele-specific PCR and immunohistochemistry for the detection of BRAF V600E mutations in hairy cell leukemia. Am J Clin Pathol. 2015;143(1):89–99.PubMedCrossRefGoogle Scholar
  71. 71.
    Kluin-Nelemans HC, Beverstock GC, Mollevanger P, Wessels HW, Hoogendoorn E, Willemze R, Falkenburg JH. Proliferation and cytogenetic analysis of hairy cell leukemia upon stimulation via the CD40 antigen. Blood. 1994;84(9):3134–41.PubMedGoogle Scholar
  72. 72.
    Brito-Babapulle V, Ellis J, Matutes E, Oscier D, Khokhar T, MacLennan K, Catovsky D. Translocation t(11;14)(q13;q32) in chronic lymphoid disorders. Genes Chromosomes Cancer. 1992;5(2):158–65.PubMedCrossRefGoogle Scholar
  73. 73.
    Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP, Pucciarini A, Bigerna B, Pacini R, Wells VA, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364(24):2305–15.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Tschernitz S, Flossbach L, Bonengel M, Roth S, Rosenwald A, Geissinger E. Alternative BRAF mutations in BRAF V600E-negative hairy cell leukaemias. Br J Haematol. 2014;165(4):529–33.PubMedCrossRefGoogle Scholar
  75. 75.
    Tiacci E, Schiavoni G, Martelli MP, Boveri E, Pacini R, Tabarrini A, Zibellini S, Santi A, Pettirossi V, Fortini E, et al. Constant activation of the RAF-MEK-ERK pathway as a diagnostic and therapeutic target in hairy cell leukemia. Haematologica. 2013;98(4):635–9.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Melo JV, Hegde U, Parreira A, Thompson I, Lampert IA, Catovsky D. Splenic B cell lymphoma with circulating villous lymphocytes: differential diagnosis of B cell leukaemias with large spleens. J Clin Pathol. 1987;40(6):642–51.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Traverse-Glehen A, Baseggio L, Bauchu EC, Morel D, Gazzo S, Ffrench M, Verney A, Rolland D, Thieblemont C, Magaud JP, et al. Splenic red pulp lymphoma with numerous basophilic villous lymphocytes: a distinct clinicopathologic and molecular entity? Blood. 2008;111(4):2253–60.PubMedCrossRefGoogle Scholar
  78. 78.
    Kanellis G, Mollejo M, Montes-Moreno S, Rodriguez-Pinilla SM, Cigudosa JC, Algara P, Montalban C, Matutes E, Wotherspoon A, Piris MA. Splenic diffuse red pulp small B-cell lymphoma: revision of a series of cases reveals characteristic clinico-pathological features. Haematologica. 2010;95(7):1122–9.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hockley SL, Morgan GJ, Leone PE, Walker BA, Morilla A, Else M, Wotherspoon A, Dearden C, Catovsky D, Gonzalez D, et al. High-resolution genomic profiling in hairy cell leukemia-variant compared with typical hairy cell leukemia. Leukemia. 2011;25(7):1189–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Matutes E, Wotherspoon A, Catovsky D. The variant form of hairy-cell leukaemia. Best Pract Res Clin Haematol. 2003;16(1):41–56.PubMedCrossRefGoogle Scholar
  81. 81.
    Sainati L, Matutes E, Mulligan S, de Oliveira MP, Rani S, Lampert IA, Catovsky D. A variant form of hairy cell leukemia resistant to alpha-interferon: clinical and phenotypic characteristics of 17 patients. Blood. 1990;76(1):157–62.PubMedGoogle Scholar
  82. 82.
    Shao H, Calvo KR, Gronborg M, Tembhare PR, Kreitman RJ, Stetler-Stevenson M, Yuan CM. Distinguishing hairy cell leukemia variant from hairy cell leukemia: development and validation of diagnostic criteria. Leuk Res. 2013;37(4):401–9.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Zhang QY, Chabot-Richards D, Evans M, Spengel K, Andrews J, Kang H, Foucar K. A retrospective study to assess the relative value of peripheral blood, bone marrow aspirate and biopsy morphology, immunohistochemical stains, and flow cytometric analysis in the diagnosis of chronic B cell lymphoproliferative neoplasms. Int J Lab Hematol. 2015;37(3):390–402.PubMedCrossRefGoogle Scholar
  84. 84.
    Waterfall JJ, Arons E, Walker RL, Pineda M, Roth L, Killian JK, Abaan OD, Davis SR, Kreitman RJ, Meltzer PS. High prevalence of MAP2K1 mutations in variant and IGHV4-34-expressing hairy-cell leukemias. Nat Genet. 2014;46(1):8–10.PubMedCrossRefGoogle Scholar
  85. 85.
    Xi L, Arons E, Navarro W, Calvo KR, Stetler-Stevenson M, Raffeld M, Kreitman RJ. Both variant and IGHV4-34-expressing hairy cell leukemia lack the BRAF V600E mutation. Blood. 2012;119(14):3330–2.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Vallianatou K, Brito-Babapulle V, Matutes E, Atkinson S, Catovsky D. p53 gene deletion and trisomy 12 in hairy cell leukemia and its variant. Leuk Res. 1999;23(11):1041–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Hockley SL, Else M, Morilla A, Wotherspoon A, Dearden C, Catovsky D, Gonzalez D, Matutes E. The prognostic impact of clinical and molecular features in hairy cell leukaemia variant and splenic marginal zone lymphoma. Br J Haematol. 2012;158(3):347–54.PubMedCrossRefGoogle Scholar
  88. 88.
    Kent SA, Variakojis D, Peterson LC. Comparative study of marginal zone lymphoma involving bone marrow. Am J Clin Pathol. 2002;117(5):698–708.PubMedCrossRefGoogle Scholar
  89. 89.
    Kurtin PJ. Indolent lymphomas of mature B lymphocytes. Hematol Oncol Clin North Am. 2009;23(4):769–90.PubMedCrossRefGoogle Scholar
  90. 90.
    Matutes E, Oscier D, Montalban C, Berger F, Callet-Bauchu E, Dogan A, Felman P, Franco V, Iannitto E, Mollejo M, et al. Splenic marginal zone lymphoma proposals for a revision of diagnostic, staging and therapeutic criteria. Leukemia. 2008;22(3):487–95.PubMedCrossRefGoogle Scholar
  91. 91.
    Mollejo M, Camacho FI, Algara P, Ruiz-Ballesteros E, Garcia JF, Piris MA. Nodal and splenic marginal zone B cell lymphomas. Hematol Oncol. 2005;23(3–4):108–18.PubMedCrossRefGoogle Scholar
  92. 92.
    Berger F, Felman P, Thieblemont C, Pradier T, Baseggio L, Bryon PA, Salles G, Callet-Bauchu E, Coiffier B. Non-MALT marginal zone B-cell lymphomas: a description of clinical presentation and outcome in 124 patients. Blood. 2000;95(6):1950–6.PubMedGoogle Scholar
  93. 93.
    Audouin J, Le Tourneau A, Molina T, Camilleri-Broet S, Adida C, Comperat E, Benattar L, Delmer A, Devidas A, Rio B, et al. Patterns of bone marrow involvement in 58 patients presenting primary splenic marginal zone lymphoma with or without circulating villous lymphocytes. Br J Haematol. 2003;122(3):404–12.PubMedCrossRefGoogle Scholar
  94. 94.
    Franco V, Florena AM, Campesi G. Intrasinusoidal bone marrow infiltration: a possible hallmark of splenic lymphoma. Histopathology. 1996;29(6):571–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Anagnostou D. Pitfalls in the pattern of bone marrow infiltration in lymphoproliferative disorders. Current Diagnostic Pathology. 2005;11(3):170–9.CrossRefGoogle Scholar
  96. 96.
    Giannouli S, Paterakis G, Ziakas PD, Anagnostou D, Voulgarelis M. Splenic marginal zone lymphomas with peripheral CD5 expression. Haematologica. 2004;89(1):113–4.PubMedGoogle Scholar
  97. 97.
    Rinaldi A, Mian M, Chigrinova E, Arcaini L, Bhagat G, Novak U, Rancoita PM, De Campos CP, Forconi F, Gascoyne RD, et al. Genome-wide DNA profiling of marginal zone lymphomas identifies subtype-specific lesions with an impact on the clinical outcome. Blood. 2011;117(5):1595–604.PubMedCrossRefGoogle Scholar
  98. 98.
    Salido M, Baro C, Oscier D, Stamatopoulos K, Dierlamm J, Matutes E, Traverse-Glehen A, Berger F, Felman P, Thieblemont C, et al. Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the Splenic B-Cell Lymphoma Group. Blood. 2010;116(9):1479–88.PubMedCrossRefGoogle Scholar
  99. 99.
    Corcoran MM, Mould SJ, Orchard JA, Ibbotson RE, Chapman RM, Boright AP, Platt C, Tsui LC, Scherer SW, Oscier DG. Dysregulation of cyclin dependent kinase 6 expression in splenic marginal zone lymphoma through chromosome 7q translocations. Oncogene. 1999;18(46):6271–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Kiel MJ, Velusamy T, Betz BL, Zhao L, Weigelin HG, Chiang MY, Huebner-Chan DR, Bailey NG, Yang DT, Bhagat G, et al. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med. 2012;209(9):1553–65.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, Monti S, Vaisitti T, Arruga F, Fama R, et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med. 2012;209(9):1537–51.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Piva R, Deaglio S, Fama R, Buonincontri R, Scarfo I, Bruscaggin A, Mereu E, Serra S, Spina V, Brusa D, et al. The Kruppel-like factor 2 transcription factor gene is recurrently mutated in splenic marginal zone lymphoma. Leukemia. 2015;29(2):503–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Catovsky D, Matutes E. Splenic lymphoma with circulating villous lymphocytes/splenic marginal-zone lymphoma. Semin Hematol. 1999;36(2):148–54.PubMedGoogle Scholar
  104. 104.
    Franco V, Florena AM, Stella M, Rizzo A, Iannitto E, Quintini G, Campesi G. Splenectomy influences bone marrow infiltration in patients with splenic marginal zone cell lymphoma with or without villous lymphocytes. Cancer. 2001;91(2):294–301.PubMedCrossRefGoogle Scholar
  105. 105.
    Morice WG, Chen D, Kurtin PJ, Hanson CA, McPhail ED. Novel immunophenotypic features of marrow lymphoplasmacytic lymphoma and correlation with Waldenstrom's macroglobulinemia. Mod Pathol. 2009;22(6):807–16.PubMedCrossRefGoogle Scholar
  106. 106.
    Lin P, Hao S, Handy BC, Bueso-Ramos CE, Medeiros LJ. Lymphoid neoplasms associated with IgM paraprotein: a study of 382 patients. Am J Clin Pathol. 2005;123(2):200–5.PubMedCrossRefGoogle Scholar
  107. 107.
    Owen RG, Barrans SL, Richards SJ, O'Connor SJ, Child JA, Parapia LA, Morgan GJ, Jack AS. Waldenstrom macroglobulinemia. Development of diagnostic criteria and identification of prognostic factors. Am J Clin Pathol. 2001;116(3):420–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Vitolo U, Ferreri AJ, Montoto S. Lymphoplasmacytic lymphoma-Waldenstrom's macroglobulinemia. Crit Rev Oncol Hematol. 2008;67(2):172–85.PubMedCrossRefGoogle Scholar
  109. 109.
    Dimopoulos MA, Kyle RA, Anagnostopoulos A, Treon SP. Diagnosis and management of Waldenstrom's macroglobulinemia. J Clin Oncol. 2005;23(7):1564–77.PubMedCrossRefGoogle Scholar
  110. 110.
    Swerdlow SH, Berger F, Pileri SA, Harris NL, Jaffe ES, Stein H. Lymphoplasmacytic lymphoma. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri S, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer (IARC); 2008. p. 194–5.Google Scholar
  111. 111.
    Arber DA, George TI. Bone marrow biopsy involvement by non-Hodgkin's lymphoma: frequency of lymphoma types, patterns, blood involvement, and discordance with other sites in 450 specimens. Am J Surg Pathol. 2005;29(12):1549–57.PubMedCrossRefGoogle Scholar
  112. 112.
    Tournilhac O, Santos DD, Xu L, Kutok J, Tai YT, Le Gouill S, Catley L, Hunter Z, Branagan AR, Boyce JA, et al. Mast cells in Waldenstrom's macroglobulinemia support lymphoplasmacytic cell growth through CD154/CD40 signaling. Ann Oncol. 2006;17(8):1275–82.PubMedCrossRefGoogle Scholar
  113. 113.
    Konoplev S, Medeiros LJ, Bueso-Ramos CE, Jorgensen JL, Lin P. Immunophenotypic profile of lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. Am J Clin Pathol. 2005;124(3):414–20.PubMedCrossRefGoogle Scholar
  114. 114.
    Ocio EM, Schop RF, Gonzalez B, Van Wier SA, Hernandez-Rivas JM, Gutierrez NC, Garcia-Sanz R, Moro MJ, Aguilera C, Hernandez J, et al. 6q deletion in Waldenstrom macroglobulinemia is associated with features of adverse prognosis. Br J Haematol. 2007;136(1):80–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014;123(18):2791–6.PubMedCrossRefGoogle Scholar
  116. 116.
    Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, et al. MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia. N Engl J Med. 2012;367(9):826–33.PubMedCrossRefGoogle Scholar
  117. 117.
    Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Manning RJ, Tripsas C, Patterson CJ, Sheehy P, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–46.PubMedCrossRefGoogle Scholar
  118. 118.
    Owen RG, Parapia LA, Higginson J, Misbah SA, Child JA, Morgan GJ, Jack AS. Clinicopathological correlates of IgM paraproteinemias. Clin Lymphoma. 2000;1(1):39–43. discussion 44-35PubMedCrossRefGoogle Scholar
  119. 119.
    Baldini L, Goldaniga M, Guffanti A, Broglia C, Cortelazzo S, Rossi A, Morra E, Colombi M, Callea V, Pogliani E, et al. Immunoglobulin M monoclonal gammopathies of undetermined significance and indolent Waldenstrom's macroglobulinemia recognize the same determinants of evolution into symptomatic lymphoid disorders: proposal for a common prognostic scoring system. J Clin Oncol. 2005;23(21):4662–8.PubMedCrossRefGoogle Scholar
  120. 120.
    Owen RG, Treon SP, Al-Katib A, Fonseca R, Greipp PR, McMaster ML, Morra E, Pangalis GA, San Miguel JF, Branagan AR, et al. Clinicopathological definition of Waldenstrom's macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom's Macroglobulinemia. Semin Oncol. 2003;30(2):110–5.PubMedCrossRefGoogle Scholar
  121. 121.
    Morice WG, Hanson CA, Kumar S, Frederick LA, Lesnick CE, Greipp PR. Novel multi-parameter flow cytometry sensitively detects phenotypically distinct plasma cell subsets in plasma cell proliferative disorders. Leukemia. 2007;21(9):2043–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Grogg KL, Morice WG, Macon WR. Spectrum of bone marrow findings in patients with angioimmunoblastic T-cell lymphoma. Br J Haematol. 2007;137(5):416–22.PubMedCrossRefGoogle Scholar
  123. 123.
    Swerdlow SH, Kuzu I, Dogan A, Dirnhofer S, Chan JK, Sander B, Ott G, Xerri L, Quintanilla-Martinez L, Campo E. The many faces of small B cell lymphomas with plasmacytic differentiation and the contribution of MYD88 testing. Virchows Arch. 2016;468(3):259–75.PubMedCrossRefGoogle Scholar
  124. 124.
    Insuasti-Beltran G, Gale JM, Wilson CS, Foucar K, Czuchlewski DR. Significance of MYD88 L265P mutation status in the subclassification of low-grade B-cell lymphoma/leukemia. Arch Pathol Lab Med. 2015;139(8):1035–41.PubMedCrossRefGoogle Scholar
  125. 125.
    Hsieh YC, Lee LP, Chuang SS. Follicular lymphoma with many circulating buttock cells: a leukemic presentation mimicking mantle cell leukemia. Am J Hematol. 2006;81(4):294–5.PubMedCrossRefGoogle Scholar
  126. 126.
    Iancu D, Hao S, Lin P, Anderson SK, Jorgensen JL, McLaughlin P, Medeiros LJ. Follicular lymphoma in staging bone marrow specimens: correlation of histologic findings with the results of flow cytometry immunophenotypic analysis. Arch Pathol Lab Med. 2007;131(2):282–7.PubMedGoogle Scholar
  127. 127.
    Canioni D, Brice P, Lepage E, Chababi M, Meignin V, Salles B, Xerri L, Peaud PY, Rousselot P, Peuchmaur M, et al. Bone marrow histological patterns can predict survival of patients with grade 1 or 2 follicular lymphoma: a study from the Groupe d'Etude des Lymphomes Folliculaires. Br J Haematol. 2004;126(3):364–71.PubMedCrossRefGoogle Scholar
  128. 128.
    Torlakovic E, Torlakovic G, Brunning RD. Follicular pattern of bone marrow involvement by follicular lymphoma. Am J Clin Pathol. 2002;118(5):780–6.PubMedCrossRefGoogle Scholar
  129. 129.
    Schmidt B, Kremer M, Gotze K, John K, Peschel C, Hofler H, Fend F. Bone marrow involvement in follicular lymphoma: comparison of histology and flow cytometry as staging procedures. Leuk Lymphoma. 2006;47(9):1857–62.PubMedCrossRefGoogle Scholar
  130. 130.
    Zhang QY, Foucar K. Bone marrow involvement by hodgkin and non-hodgkin lymphomas. Hematol Oncol Clin North Am. 2009;23(4):873–902.PubMedCrossRefGoogle Scholar
  131. 131.
    de Martini RM, Turner RR, Boone DC, Lukes RJ, Parker JW. Lymphocyte immunophenotyping of B-cell lymphomas: a flow cytometric analysis of neoplastic and nonneoplastic cells in 271 cases. Clin Immunol Immunopathol. 1988;49(3):365–79.PubMedCrossRefGoogle Scholar
  132. 132.
    Murase T, Yamaguchi M, Suzuki R, Okamoto M, Sato Y, Tamaru J, Kojima M, Miura I, Mori N, Yoshino T, et al. Intravascular large B-cell lymphoma (IVLBCL): a clinicopathologic study of 96 cases with special reference to the immunophenotypic heterogeneity of CD5. Blood. 2007;109(2):478–85.PubMedCrossRefGoogle Scholar
  133. 133.
    Kremer M, Spitzer M, Mandl-Weber S, Stecker K, Schmidt B, Hofler H, Quintanilla-Martinez L, Fend F. Discordant bone marrow involvement in diffuse large B-cell lymphoma: comparative molecular analysis reveals a heterogeneous group of disorders. Lab Invest. 2003;83(1):107–14.PubMedCrossRefGoogle Scholar
  134. 134.
    Costes V, Duchayne E, Taib J, Delfour C, Rousset T, Baldet P, Delsol G, Brousset P. Intrasinusoidal bone marrow infiltration: a common growth pattern for different lymphoma subtypes. Br J Haematol. 2002;119(4):916–22.PubMedCrossRefGoogle Scholar
  135. 135.
    Soussain C, Patte C, Ostronoff M, Delmer A, Rigal-Huguet F, Cambier N, Leprise PY, Francois S, Cony-Makhoul P, Harousseau JL, et al. Small noncleaved cell lymphoma and leukemia in adults. A retrospective study of 65 adults treated with the LMB pediatric protocols. Blood. 1995;85(3):664–74.PubMedGoogle Scholar
  136. 136.
    Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ, Greiner TC, Weisenburger DD, Rosenwald A, Ott G, et al. Molecular diagnosis of Burkitt's lymphoma. N Engl J Med. 2006;354(23):2431–42.PubMedCrossRefGoogle Scholar
  137. 137.
    Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF, Bernd HW, Cogliatti SB, Dierlamm J, Feller AC, et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354(23):2419–30.PubMedCrossRefGoogle Scholar
  138. 138.
    Salaverria I, Martin-Guerrero I, Wagener R, Kreuz M, Kohler CW, Richter J, Pienkowska-Grela B, Adam P, Burkhardt B, Claviez A, et al. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood. 2014;123(8):1187–98.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, Wright G, Shaffer AL, Hodson DJ, Buras E, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490(7418):116–20.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Navid F, Mosijczuk AD, Head DR, Borowitz MJ, Carroll AJ, Brandt JM, Link MP, Rozans MK, Thomas GA, Schwenn MR, et al. Acute lymphoblastic leukemia with the (8;14)(q24;q32) translocation and FAB L3 morphology associated with a B-precursor immunophenotype: the Pediatric Oncology Group experience. Leukemia. 1999;13(1):135–41.PubMedCrossRefGoogle Scholar
  141. 141.
    Borowitz MJ, Hunger SP, Carroll AJ, Shuster JJ, Pullen DJ, Steuber CP, Cleary ML. Predictability of the t(1;19)(q23;p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study. Blood. 1993;82(4):1086–91.PubMedGoogle Scholar
  142. 142.
    Grimaldi JC, Meeker TC. The t(5;14) chromosomal translocation in a case of acute lymphocytic leukemia joins the interleukin-3 gene to the immunoglobulin heavy chain gene. Blood. 1989;73(8):2081–5.PubMedGoogle Scholar
  143. 143.
    Nelson BP, Treaba D, Goolsby C, Williams S, Dewald G, Gordon L, Peterson LC. Surface immunoglobulin positive lymphoblastic leukemia in adults; a genetic spectrum. Leuk Lymphoma. 2006;47(7):1352–9.PubMedCrossRefGoogle Scholar
  144. 144.
    Konoplev S, Lu X, Konopleva M, Jain N, Ouyang J, Goswami M, Roberts KG, Valentine M, Mullighan CG, Bueso-Ramos C, et al. CRLF2-positive B-cell acute lymphoblastic leukemia in adult patients: a single-institution experience. Am J Clin Pathol. 2017;147(4):357–63.PubMedCrossRefGoogle Scholar
  145. 145.
    Boer JM, Koenders JE, van der Holt B, Exalto C, Sanders MA, Cornelissen JJ, Valk PJ, den Boer ML, Rijneveld AW. Expression profiling of adult acute lymphoblastic leukemia identifies a BCR-ABL1-like subgroup characterized by high non-response and relapse rates. Haematologica. 2015;100(7):e261–4.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Weston BW, Hayden MA, Roberts KG, Bowyer S, Hsu J, Fedoriw G, Rao KW, Mullighan CG. Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1-PDGFRB-positive acute lymphoblastic leukemia. J Clin Oncol. 2013;31(25):e413–6.PubMedCrossRefGoogle Scholar
  147. 147.
    van der Velden VH, Bruggemann M, Hoogeveen PG, de Bie M, Hart PG, Raff T, Pfeifer H, Luschen S, Szczepanski T, van Wering ER, et al. TCRB gene rearrangements in childhood and adult precursor-B-ALL: frequency, applicability as MRD-PCR target, and stability between diagnosis and relapse. Leukemia. 2004;18(12):1971–80.PubMedCrossRefGoogle Scholar
  148. 148.
    Tiacci E, Pileri S, Orleth A, Pacini R, Tabarrini A, Frenguelli F, Liso A, Diverio D, Lo-Coco F, Falini B. PAX5 expression in acute leukemias: higher B-lineage specificity than CD79a and selective association with t(8;21)-acute myelogenous leukemia. Cancer Res. 2004;64(20):7399–404.PubMedCrossRefGoogle Scholar
  149. 149.
    Komrokji R, Lancet J, Felgar R, Wang N, Bennett JM. Burkitt's leukemia with precursor B-cell immunophenotype and atypical morphology (atypical Burkitt's leukemia/lymphoma): case report and review of literature. Leuk Res. 2003;27(6):561–6.PubMedCrossRefGoogle Scholar
  150. 150.
    Ozdemirli M, Fanburg-Smith JC, Hartmann DP, Azumi N, Miettinen M. Differentiating lymphoblastic lymphoma and Ewing's sarcoma: lymphocyte markers and gene rearrangement. Mod Pathol. 2001;14(11):1175–82.PubMedCrossRefGoogle Scholar
  151. 151.
    McKenna RW, Washington LT, Aquino DB, Picker LJ, Kroft SH. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood. 2001;98(8):2498–507.PubMedCrossRefGoogle Scholar
  152. 152.
    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pathology, WRN244Massachusetts General HospitalBostonUSA

Personalised recommendations