Advertisement

T- and NK-Cell Lymphocytosis

  • Sa A. Wang
Chapter

Abstract

Peripheral blood (PB) lymphocytosis is one of the most common abnormalities encountered in clinical hematology laboratory. Lymphocytosis is an increase in the number and/or proportion of lymphocytes in the blood. The normal ranges of lymphocytes in adult patients are about 1.0–3.0 × 109/L and 20–40%. In adults, absolute lymphocytosis is defined as absolute lymphocyte count (ALC) greater than 4.0 × 109/L, while relative lymphocytosis is an increase in the percentage of lymphocytes >40%, but ALC is normal. In children, the reference ranges differ significantly with age and, in general, significantly higher than adults. Mayo Clinic laboratory data reported a normal range of lymphocyte count of 2.0–11.0 × 109/L (26–36%) at birth, which increases over the first 6 months of life, and peaks at 6 months to 1 year 1.4–22 × 109/L (47–77%), then declines over time, and approaches to adult range between age 15 and 20 years. The reference ranges may vary depending on populations, individual laboratory, instruments, and methods.

References

  1. 1.
    Cohen JI. Epstein–Barr virus infection. N Engl J Med. 2000;343(7):481–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Cohen JI, Corey GR. Cytomegalovirus infection in the normal host. Medicine (Baltimore). 1985;64(2):100–14.CrossRefGoogle Scholar
  3. 3.
    Karandikar NJ, Hotchkiss EC, McKenna RW, Kroft SH. Transient stress lymphocytosis: an immunophenotypic characterization of the most common cause of newly identified adult lymphocytosis in a tertiary hospital. Am J Clin Pathol. 2002;117(5):819–25.PubMedCrossRefGoogle Scholar
  4. 4.
    Teggatz JR, Parkin J, Peterson L. Transient atypical lymphocytosis in patients with emergency medical conditions. Arch Pathol Lab Med. 1987;111(8):712–4.PubMedGoogle Scholar
  5. 5.
    Chabot-Richards DS, George TI. Leukocytosis. Int J Lab Hematol. 2014;36(3):279–88.PubMedCrossRefGoogle Scholar
  6. 6.
    George TI. Malignant or benign leukocytosis. Hematology Am Soc Hematol Educ Program. 2012;2012:475–84.PubMedGoogle Scholar
  7. 7.
    Sun P, Kowalski EM, Cheng CK, Shawwa A, Liwski RS, Juskevicius R. Predictive significance of absolute lymphocyte count and morphology in adults with a new onset peripheral blood lymphocytosis. J Clin Pathol. 2014;67(12):1062–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Tollerud DJ, Clark JW, Brown LM, Neuland CY, Pankiw-Trost LK, Blattner WA, Hoover RN. The influence of age, race, and gender on peripheral blood mononuclear-cell subsets in healthy nonsmokers. J Clin Immunol. 1989;9(3):214–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Valiathan R, Deeb K, Diamante M, Ashman M, Sachdeva N, Asthana D. Reference ranges of lymphocyte subsets in healthy adults and adolescents with special mention of T cell maturation subsets in adults of South Florida. Immunobiology. 2014;219(7):487–96.PubMedCrossRefGoogle Scholar
  10. 10.
    Marcos A, Nova E, Montero A. Changes in the immune system are conditioned by nutrition. Eur J Clin Nutr. 2003;57(Suppl 1):S66–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Rubin RH, Carney WP, Schooley RT, Colvin RB, Burton RC, Hoffman RA, Hansen WP, Cosimi AB, Russell PS, Hirsch MS. The effect of infection on T lymphocyte subpopulations: a preliminary report. Int J Immunopharmacol. 1981;3(3):307–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Laurence J. T-cell subsets in health, infectious disease, and idiopathic CD4+ T lymphocytopenia. Ann Intern Med. 1993;119(1):55–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Heldrup J, Kalm O, Prellner K. Blood T and B lymphocyte subpopulations in healthy infants and children. Acta Paediatr. 1992;81(2):125–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Ginaldi L, Farahat N, Matutes E, De Martinis M, Morilla R, Catovsky D. Differential expression of T cell antigens in normal peripheral blood lymphocytes: a quantitative analysis by flow cytometry. J Clin Pathol. 1996;49(7):539–44.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Reinhold U, Abken H, Kukel S, Moll M, Muller R, Oltermann I, Kreysel HW. CD7- T cells represent a subset of normal human blood lymphocytes. J Immunol. 1993;150(5):2081–9.PubMedGoogle Scholar
  16. 16.
    Flammiger A, Bacher U, Christopeit M, Horn C, Ruhlmann E, Kluge K, Vettorazzi E, Bokemeyer C, Binder M. Multiparameter flow cytometry in the differential diagnosis of aberrant T-cell clones of unclear significance. Leuk Lymphoma. 2015;56(3):639–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang W, Gao L, Gong M, Tang Y, Li Y, Zhang WT, Huang FZ, Zhang CX, Chen YR, Gao YY, et al. Non-malignant T-cells lacking multiple pan-T markers can be found in lymph nodes. Leuk Lymphoma. 2015:1–7.Google Scholar
  18. 18.
    Roden AC, Morice WG, Hanson CA. Immunophenotypic attributes of benign peripheral blood gamma delta T cells and conditions associated with their increase. Arch Pathol Lab Med. 2008;132(11):1774–80.PubMedGoogle Scholar
  19. 19.
    Shimura Y, Horiike S, Tsutsumi Y, Hatsuse M, Okano A, Fuchida S, Kobayashi T, Matsumoto Y, Kuroda J, Kawata-Iida E, et al. The longitudinal analysis of large granular lymphocytosis in patients with Philadelphia chromosome-positive leukemia treated with dasatinib. Int J Hematol. 2015;102(4):426–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Ito Y, Miyamoto T, Kamimura T, Aoki K, Henzan H, Aoki T, Shiratsuchi M, Kato K, Nagafuji K, Ogawa R, et al. Characteristics of patients with development of large granular lymphocyte expansion among dasatinib-treated patients with relapsed philadelphia chromosome-positive acute lymphoblastic leukemia after allogeneic stem cell transplantation. Cl Lymph Myelom Leuk. 2015;15(3):e47–54.CrossRefGoogle Scholar
  21. 21.
    Mohty M, Faucher C, Vey N, Chabannon C, Sainty D, Arnoulet C, Gaugler B, Gastaut JA, Maraninchi D, Olive D, et al. Features of large granular lymphocytes (LGL) expansion following allogeneic stem cell transplantation: a long-term analysis. Leukemia. 2002;16(10):2129–33.PubMedCrossRefGoogle Scholar
  22. 22.
    Wolniak KL, Goolsby CL, Chen YH, Chenn A, Singhal S, JayeshMehta, Peterson LA. Expansion of a clonal CD8+CD57+ large granular lymphocyte population after autologous stem cell transplant in multiple myeloma. Am J Clin Pathol. 2013;139(2):231–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Munoz-Ballester J, Chen-Liang TH, Hurtado AM, Heras I, de Arriba F, Garcia-Malo MD, Iniesta P, Lozano ML, Nieto JB, Ortuno FJ, et al. Persistent cytotoxic T lymphocyte expansions after allogeneic haematopoietic stem cell transplantation: kinetics, clinical impact and absence of STAT3 mutations. Br J Haematol. 2016;172(6):937–46.PubMedCrossRefGoogle Scholar
  24. 24.
    Sabnani I, Tsang P. Are clonal T-cell large granular lymphocytes to blame for unexplained haematological abnormalities? Br J Haematol. 2007;136(1):30–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Dhodapkar MV, Li CY, Lust JA, Tefferi A, Phyliky RL. Clinical spectrum of clonal proliferations of T-large granular lymphocytes: a T-cell clonopathy of undetermined significance? Blood. 1994;84(5):1620–7.PubMedGoogle Scholar
  26. 26.
    Feng B, Jorgensen JL, Hu Y, Medeiros LJ, Wang SA. TCR-Vbeta flow cytometric analysis of peripheral blood for assessing clonality and disease burden in patients with T cell large granular lymphocyte leukaemia. J Clin Pathol. 2010;63(2):141–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Singleton TP, Yin B, Teferra A, Mao JZ. Spectrum of clonal large granular lymphocytes (LGLs) of alphabeta T cells: T-cell clones of undetermined significance, T-cell LGL leukemias, and T-cell immunoclones. Am J Clin Pathol. 2015;144(1):137–44.PubMedCrossRefGoogle Scholar
  28. 28.
    Carding SR, Egan PJ. Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol. 2002;2(5):336–45.PubMedCrossRefGoogle Scholar
  29. 29.
    Vroom TM, Scholte G, Ossendorp F, Borst J. Tissue distribution of human gamma delta T cells: no evidence for general epithelial tropism. J Clin Pathol. 1991;44(12):1012–7.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Holtmeier W. Compartmentalization gamma/delta T cells and their putative role in mucosal immunity. Crit Rev Immunol. 2003;23(5-6):473–88.PubMedCrossRefGoogle Scholar
  31. 31.
    Fahrer AM, Konigshofer Y, Kerr EM, Ghandour G, Mack DH, Davis MM, Chien YH. Attributes of gammadelta intraepithelial lymphocytes as suggested by their transcriptional profile. Proc Natl Acad Sci U S A. 2001;98(18):10261–6.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ueta C, Tsuyuguchi I, Kawasumi H, Takashima T, Toba H, Kishimoto S. Increase of gamma/delta T cells in hospital workers who are in close contact with tuberculosis patients. Infect Immun. 1994;62(12):5434–41.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Martins EB, Graham AK, Chapman RW, Fleming KA. Elevation of gamma delta T lymphocytes in peripheral blood and livers of patients with primary sclerosing cholangitis and other autoimmune liver diseases. Hepatology. 1996;23(5):988–93.PubMedGoogle Scholar
  34. 34.
    McClanahan J, Fukushima PI, Stetler-Stevenson M. Increased peripheral blood gamma delta T-cells in patients with lymphoid neoplasia: a diagnostic dilemma in flow cytometry. Cytometry. 1999;38(6):280–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Ishiyama KI, Kitawaki T, Sugimoto N, Sozu T, Anzai N, Okada M, Nohgawa M, Hatanaka K, Arima N, Ishikawa T, et al. Principal component analysis uncovers cytomegalovirus-associated NK cell activation in Ph+ leukemia patients treated with dasatinib. Leukemia. 2017;31(1):268.PubMedCrossRefGoogle Scholar
  36. 36.
    Kim DH, Kamel-Reid S, Chang H, Sutherland R, Jung CW, Kim HJ, Lee JJ, Lipton JH. Natural killer or natural killer/T cell lineage large granular lymphocytosis associated with dasatinib therapy for Philadelphia chromosome positive leukemia. Haematologica. 2009;94(1):135–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Schiffer CA, Cortes JE, Hochhaus A, Saglio G, le Coutre P, Porkka K, Mustjoki S, Mohamed H, Shah NP. Lymphocytosis after treatment with dasatinib in chronic myeloid leukemia: effects on response and toxicity. Cancer. 2016;122(9):1398–407.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Bosch M, Khan FM, Storek J. Immune reconstitution after hematopoietic cell transplantation. Curr Opin Hematol. 2012;19(4):324–35.PubMedCrossRefGoogle Scholar
  39. 39.
    Marcenaro E, Carlomagno S, Pesce S, Moretta A, Sivori S. Bridging innate NK cell functions with adaptive immunity. Adv Exp Med Biol. 2011;780:45–55.PubMedCrossRefGoogle Scholar
  40. 40.
    Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40.PubMedCrossRefGoogle Scholar
  41. 41.
    Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R, Li Y, Wang JM, Yang-Yen HF, Karras J, et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest. 2001;107(3):351–62.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Zhang R, Shah MV, Yang J, Nyland SB, Liu X, Yun JK, Albert R, Loughran TP Jr. Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci U S A. 2008;105(42):16308–13.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jerez A, Clemente MJ, Makishima H, Koskela H, Leblanc F, Peng Ng K, Olson T, Przychodzen B, Afable M, Gomez-Segui I, et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood. 2012;120(15):3048–57.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rajala HL, Porkka K, Maciejewski JP, Loughran TP Jr, Mustjoki S. Uncovering the pathogenesis of large granular lymphocytic leukemia-novel STAT3 and STAT5b mutations. Ann Med. 2014;46(3):114–22.PubMedCrossRefGoogle Scholar
  45. 45.
    Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmaki H, Andersson EI, Lagstrom S, Clemente MJ, Olson T, Jalkanen SE, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366(20):1905–13.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Loughran TP Jr. Clonal diseases of large granular lymphocytes. Blood. 1993;82(1):1–14.PubMedGoogle Scholar
  48. 48.
    Steinway SN, LeBlanc F, Loughran TP Jr. The pathogenesis and treatment of large granular lymphocyte leukemia. Blood Rev. 2014;28(3):87–94.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kwong YL, Wong KF. Association of pure red cell aplasia with T large granular lymphocyte leukaemia. J Clin Pathol. 1998;51(9):672–5.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bareau B, Rey J, Hamidou M, Donadieu J, Morcet J, Reman O, Schleinitz N, Tournilhac O, Roussel M, Fest T, et al. Analysis of a French cohort of patients with large granular lymphocyte leukemia: a report on 229 cases. Haematologica. 2010;95(9):1534–41.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lamy T, Loughran TP Jr. How I treat LGL leukemia. Blood. 2011;117(10):2764–74.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Garrido P, Ruiz-Cabello F, Barcena P, Sandberg Y, Canton J, Lima M, Balanzategui A, Gonzalez M, Lopez-Nevot MA, Langerak AW, et al. Monoclonal TCR-Vbeta13.1+/CD4+/NKa+/CD8-/+dim T-LGL lymphocytosis: evidence for an antigen-driven chronic T-cell stimulation origin. Blood. 2007;109(11):4890–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Lima M, Almeida J, Dos Anjos TM, Alguero Md Mdel C, Santos AH, Balanzategui A, Queiros ML, Barcena P, Izarra A, Fonseca S, et al. TCRalphabeta+/CD4+ large granular lymphocytosis: a new clonal T-cell lymphoproliferative disorder. Am J Pathol. 2003;163(2):763–71.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Richards SJ, Sivakumaran M, Parapia LA, Balfour I, Norfolk DR, Kaeda J, Scott CS. A distinct large granular lymphocyte (LGL)/NK-associated (NKa) abnormality characterized by membrane CD4 and CD8 coexpression. The Yorkshire Leukaemia Group. Br J Haematol. 1992;82(3):494–501.PubMedCrossRefGoogle Scholar
  55. 55.
    Au WY, Lam CC, Lie AK, Pang A, Kwong YL. T-cell large granular lymphocyte leukemia of donor origin after allogeneic bone marrow transplantation. Am J Clin Pathol. 2003;120(4):626–30.PubMedCrossRefGoogle Scholar
  56. 56.
    Gill H, Ip AH, Leung R, So JC, Pang AW, Tse E, Leung AY, Lie AK, Kwong YL. Indolent T-cell large granular lymphocyte leukaemia after haematopoietic SCT: a clinicopathologic and molecular analysis. Bone Marrow Transplant. 2012;47(7):952–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Lopez JE, Yabe M, Carballo-Zarate AA, Wang SA, Jorgensen JL, Ahmed S, Lee J, Li S, Schlette E, McDonnell T, et al. Donor-derived T-cell large granular lymphocytic leukemia in a patient with peripheral T-cell lymphoma. J Natl Compr Cancer Netw. 2016;14(8):939–44.CrossRefGoogle Scholar
  58. 58.
    Howard MT, Bejanyan N, Maciejewski JP, Hsi ED. T/NK large granular lymphocyte leukemia and coexisting monoclonal B-cell lymphocytosis-like proliferations. An unrecognized and frequent association. Am J Clin Pathol. 2010;133(6):936–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Viny AD, Lichtin A, Pohlman B, Loughran T, Maciejewski J. Chronic B-cell dyscrasias are an important clinical feature of T-LGL leukemia. Leuk Lymphoma. 2008;49(5):932–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Hanada T, Ishida T, Kojima H, Tsuchiya T. Granular lymphocyte leukaemia in association with multiple myeloma. Br J Haematol. 1992;80(1):127–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Huh YO, Medeiros LJ, Ravandi F, Konoplev S, Jorgensen JL, Miranda RN. T-cell large granular lymphocyte leukemia associated with myelodysplastic syndrome: a clinicopathologic study of nine cases. Am J Clin Pathol. 2009;131(3):347–56.CrossRefPubMedGoogle Scholar
  62. 62.
    Saunthararajah Y, Molldrem JL, Rivera M, Williams A, Stetler-Stevenson M, Sorbara L, Young NS, Barrett JA. Coincident myelodysplastic syndrome and T-cell large granular lymphocytic disease: clinical and pathophysiological features. Br J Haematol. 2001;112(1):195–200.PubMedCrossRefGoogle Scholar
  63. 63.
    Chan WC, Foucar K, Morice WG. T-cell large granular lymphocytic leukemia. The world health organization classification of hematolymphoid neoplasms Lyon, France: IARC; 2008.Google Scholar
  64. 64.
    Neff JL, Howard MT, Morice WG. Distinguishing T-cell large granular lymphocytic leukemia from reactive conditions: laboratory tools and challenges in their use. Surg Pathol Clin. 2013;6(4):631–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Ohgami RS, Ohgami JK, Pereira IT, Gitana G, Zehnder JL, Arber DA. Refining the diagnosis of T-cell large granular lymphocytic leukemia by combining distinct patterns of antigen expression with T-cell clonality studies. Leukemia. 2011;25(9):1439–43.CrossRefPubMedGoogle Scholar
  66. 66.
    Alekshun TJ, Tao J, Sokol L. Aggressive T-cell large granular lymphocyte leukemia: a case report and review of the literature. Am J Hematol. 2007;82(6):481–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Yabe M, Medeiros LJ, Wang SA, Konoplev S, Ok CY, Loghavi S, Lu G, Flores L, Khoury JD, Cason RC, et al. Clinicopathologic, immunophenotypic, cytogenetic, and molecular features of gammadelta T-cell large granular lymphocytic leukemia: an analysis of 14 patients suggests biologic differences with alphabeta t-cell large granular lymphocytic leukemia. [corrected]. Am J Clin Pathol. 2015;144(4):607–19.PubMedCrossRefGoogle Scholar
  68. 68.
    Yabe M, Medeiros LJ, Wang SA, Tang G, Bueso-Ramos CE, Jorgensen JL, Bhagat G, Chen W, Li S, Young KH, et al. Distinguishing between hepatosplenic T-cell lymphoma and gammadelta T-cell large granular lymphocytic leukemia: a clinicopathologic, immunophenotypic, and molecular analysis. Am J Surg Pathol. 2017;41(1):82–93.PubMedCrossRefGoogle Scholar
  69. 69.
    Morice WG, Kurtin PJ, Tefferi A, Hanson CA. Distinct bone marrow findings in T-cell granular lymphocytic leukemia revealed by paraffin section immunoperoxidase stains for CD8, TIA-1, and granzyme B. Blood. 2002;99(1):268–74.PubMedCrossRefGoogle Scholar
  70. 70.
    Wong KF, Chan JC, Liu HS, Man C, Kwong YL. Chromosomal abnormalities in T-cell large granular lymphocyte leukaemia: report of two cases and review of the literature. Br J Haematol. 2002;116(3):598–600.PubMedCrossRefGoogle Scholar
  71. 71.
    Clemente MJ, Wlodarski MW, Makishima H, Viny AD, Bretschneider I, Shaik M, Bejanyan N, Lichtin AE, Hsi ED, Paquette RL, et al. Clonal drift demonstrates unexpected dynamics of the T-cell repertoire in T-large granular lymphocyte leukemia. Blood. 2011;118(16):4384–93.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Rajala HL, Olson T, Clemente MJ, Lagstrom S, Ellonen P, Lundan T, Hamm DE, Zaman SA, Lopez Marti JM, Andersson EI, et al. The analysis of clonal diversity and therapy responses using STAT3 mutations as a molecular marker in large granular lymphocytic leukemia. Haematologica. 2015;100(1):91–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Rajala HL, Eldfors S, Kuusanmaki H, van Adrichem AJ, Olson T, Lagstrom S, Andersson EI, Jerez A, Clemente MJ, Yan Y, et al. Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood. 2013;121(22):4541–50.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Epling-Burnette PK, Bai F, Wei S, Chaurasia P, Painter JS, Olashaw N, Hamilton A, Sebti S, Djeu JY, Loughran TP. ERK couples chronic survival of NK cells to constitutively activated Ras in lymphoproliferative disease of granular lymphocytes (LDGL). Oncogene. 2004;23(57):9220–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Rabbani GR, Phyliky RL, Tefferi A. A long-term study of patients with chronic natural killer cell lymphocytosis. Br J Haematol. 1999;106(4):960–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Oshimi K. Progress in understanding and managing natural killer-cell malignancies. Br J Haematol. 2007;139(4):532–44.PubMedCrossRefGoogle Scholar
  77. 77.
    Barcena P, Jara-Acevedo M, Tabernero MD, Lopez A, Sanchez ML, Garcia-Montero AC, Munoz-Garcia N, Vidriales MB, Paiva A, Lecrevisse Q, et al. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality. Oncotarget. 2015;6(40):42938–51.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Morice WG, Kurtin PJ, Leibson PJ, Tefferi A, Hanson CA. Demonstration of aberrant T-cell and natural killer-cell antigen expression in all cases of granular lymphocytic leukaemia. Br J Haematol. 2003;120(6):1026–36.PubMedCrossRefGoogle Scholar
  79. 79.
    Tien HF, Su IJ, Tang JL, Liu MC, Lee FY, Chen YC, Chuang SM. Clonal chromosomal abnormalities as direct evidence for clonality in nasal T/natural killer cell lymphomas. Br J Haematol. 1997;97(3):621–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Zambello R, Falco M, Della Chiesa M, Trentin L, Carollo D, Castriconi R, Cannas G, Carlomagno S, Cabrelle A, Lamy T, et al. Expression and function of KIR and natural cytotoxicity receptors in NK-type lymphoproliferative diseases of granular lymphocytes. Blood. 2003;102(5):1797–805.PubMedCrossRefGoogle Scholar
  81. 81.
    Landay A, Gebel H, Levin S, Prasthofer E, Pistoia V, Downing J, Grossi C. CD16+ NK lymphoproliferative disorders: cellular and molecular characterization. Nat Immun Cell Growth Regul. 1987;6(3):141–9.PubMedGoogle Scholar
  82. 82.
    Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet. 1992;51(6):1229–39.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Epling-Burnette PK, Painter JS, Chaurasia P, Bai F, Wei S, Djeu JY, Loughran TP Jr. Dysregulated NK receptor expression in patients with lymphoproliferative disease of granular lymphocytes. Blood. 2004;103(9):3431–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Suzuki R, Suzumiya J, Nakamura S, Aoki S, Notoya A, Ozaki S, Gondo H, Hino N, Mori H, Sugimori H, et al. Aggressive natural killer-cell leukemia revisited: large granular lymphocyte leukemia of cytotoxic NK cells. Leukemia. 2004;18(4):763–70.PubMedCrossRefGoogle Scholar
  85. 85.
    Ruskova A, Thula R, Chan G. Aggressive natural killer-cell leukemia: report of five cases and review of the literature. Leuk Lymphoma. 2004;45(12):2427–38.PubMedCrossRefGoogle Scholar
  86. 86.
    Li Y, Wei J, Mao X, Gao Q, Liu L, Cheng P, Liu L, Zhang X, Zhang K, Wang J, et al. Flow cytometric immunophenotyping is sensitive for the early diagnosis of de novo aggressive natural killer cell leukemia (ankl): a multicenter retrospective analysis. PLoS One. 2016;11(8):e0158827.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Nicolae A, Ganapathi KA, Pham TH, Xi L, Torres-Cabala CA, Nanaji NM, Zha HD, Fan Z, Irwin S, Pittaluga S, et al. EBV-negative aggressive NK-cell leukemia/lymphoma: clinical, pathologic, and genetic features. Am J Surg Pathol. 2017;41(1):67–74.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Gao LM, Zhao S, Liu WP, Zhang WY, Li GD, Kucuk C, Hu XZ, Chan WC, Tang Y, Ding WS, et al. Clinicopathologic characterization of aggressive natural killer cell leukemia involving different tissue sites. Am J Surg Pathol. 2016;40(6):836–46.PubMedCrossRefGoogle Scholar
  89. 89.
    Shi Y, Wang E. Hepatosplenic T-cell lymphoma: a clinicopathologic review with an emphasis on diagnostic differentiation from other T-cell/natural killer-cell neoplasms. Arch Pathol Lab Med. 2015;139(9):1173–80.PubMedCrossRefGoogle Scholar
  90. 90.
    Tripodo C, Iannitto E, Florena AM, Pucillo CE, Piccaluga PP, Franco V, Pileri SA. Gamma-delta T-cell lymphomas. Nat Rev Clin Oncol. 2009;6(12):707–17.PubMedCrossRefGoogle Scholar
  91. 91.
    Belhadj K, Reyes F, Farcet JP, Tilly H, Bastard C, Angonin R, Deconinck E, Charlotte F, Leblond V, Labouyrie E, et al. Hepatosplenic gammadelta T-cell lymphoma is a rare clinicopathologic entity with poor outcome: report on a series of 21 patients. Blood. 2003;102(13):4261–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Parakkal D, Sifuentes H, Semer R, Ehrenpreis ED. Hepatosplenic T-cell lymphoma in patients receiving TNF-alpha inhibitor therapy: expanding the groups at risk. Eur J Gastroenterol Hepatol. 2011;23(12):1150–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Vose J, Armitage J, Weisenburger D, International TCLP. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26(25):4124–30.PubMedCrossRefGoogle Scholar
  94. 94.
    Macon WR, Levy NB, Kurtin PJ, Salhany KE, Elkhalifa MY, Casey TT, Craig FE, Vnencak-Jones CL, Gulley ML, Park JP, et al. Hepatosplenic alphabeta T-cell lymphomas: a report of 14 cases and comparison with hepatosplenic gammadelta T-cell lymphomas. Am J Surg Pathol. 2001;25(3):285–96.PubMedCrossRefGoogle Scholar
  95. 95.
    Yabe M, Medeiros LJ, Tang G, Wang SA, Patel KP, Routbort M, Bhagat G, Bueso-Ramos CE, Jorgensen JL, Luthra R, et al. Dyspoietic changes associated with hepatosplenic T-cell lymphoma are not a manifestation of a myelodysplastic syndrome: analysis of 25 patients. Hum Pathol. 2016;50:109–17.PubMedCrossRefGoogle Scholar
  96. 96.
    Yabe M, Medeiros LJ, Tang G, Wang SA, Ahmed S, Nieto Y, Hu S, Bhagat G, Oki Y, Patel KP, et al. Prognostic factors of hepatosplenic T-cell lymphoma: clinicopathologic study of 28 cases. Am J Surg Pathol. 2016;40(5):676–88.PubMedCrossRefGoogle Scholar
  97. 97.
    Ohshima K, Haraoka S, Harada N, Kamimura T, Suzumiya J, Kanda M, Kawasaki C, Sugihara M, Kikuchi M. Hepatosplenic gammadelta T-cell lymphoma: relation to Epstein–Barr virus and activated cytotoxic molecules. Histopathology. 2000;36(2):127–35.PubMedCrossRefGoogle Scholar
  98. 98.
    Jonveaux P, Daniel MT, Martel V, Maarek O, Berger R. Isochromosome 7q and trisomy 8 are consistent primary, non-random chromosomal abnormalities associated with hepatosplenic T gamma/delta lymphoma. Leukemia. 1996;10(9):1453–5.PubMedGoogle Scholar
  99. 99.
    Wang CC, Tien HF, Lin MT, Su IJ, Wang CH, Chuang SM, Shen MC, Liu CH. Consistent presence of isochromosome 7q in hepatosplenic T gamma/delta lymphoma: a new cytogenetic-clinicopathologic entity. Genes Chromosom Cancer. 1995;12(3):161–4.PubMedCrossRefGoogle Scholar
  100. 100.
    McKinney M, Moffitt AB, Gaulard P, Travert M, De Leval L, Nicolae A, Raffeld M, Jaffe ES, Pittaluga S, Xi L, et al. The genetic basis of hepatosplenic T-cell lymphoma. Cancer Discov. 2017;7(4):369–79. https://doi.org/10.1158/2159-8290.CD-16-0330. Epub 2017 Jan 25.
  101. 101.
    Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, Ralfkiaer E, Chimenti S, Diaz-Perez JL, Duncan LM, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–85.PubMedCrossRefGoogle Scholar
  102. 102.
    Olsen E, Vonderheid E, Pimpinelli N, Willemze R, Kim Y, Knobler R, Zackheim H, Duvic M, Estrach T, Lamberg S, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110(6):1713–22.PubMedCrossRefGoogle Scholar
  103. 103.
    Olsen EA, Whittaker S, Kim YH, Duvic M, Prince HM, Lessin SR, Wood GS, Willemze R, Demierre MF, Pimpinelli N, et al. Clinical end points and response criteria in mycosis fungoides and Sezary syndrome: a consensus statement of the International Society for Cutaneous Lymphomas, the United States Cutaneous Lymphoma Consortium, and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer. J Clin Oncol. 2011;29(18):2598–607.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Huang KP, Weinstock MA, Clarke CA, McMillan A, Hoppe RT, Kim YH. Second lymphomas and other malignant neoplasms in patients with mycosis fungoides and Sezary syndrome: evidence from population-based and clinical cohorts. Arch Dermatol. 2007;143(1):45–50.PubMedCrossRefGoogle Scholar
  105. 105.
    Introcaso CE, Hess SD, Kamoun M, Ubriani R, Gelfand JM, Rook AH. Association of change in clinical status and change in the percentage of the CD4+CD26− lymphocyte population in patients with Sezary syndrome. J Am Acad Dermatol. 2005;53(3):428–34.PubMedCrossRefGoogle Scholar
  106. 106.
    Boonk SE, Zoutman WH, Marie-Cardine A, van der Fits L, Out-Luiting JJ, Mitchell TJ, Tosi I, Morris SL, Moriarty B, Booken N, et al. Evaluation of immunophenotypic and molecular biomarkers for Sezary syndrome using standard operating procedures: a multicenter study of 59 patients. J Invest Dermatol. 2016;136(7):1364–72.PubMedCrossRefGoogle Scholar
  107. 107.
    Jones D, Dang NH, Duvic M, Washington LT, Huh YO. Absence of CD26 expression is a useful marker for diagnosis of T-cell lymphoma in peripheral blood. Am J Clin Pathol. 2001;115(6):885–92.PubMedCrossRefGoogle Scholar
  108. 108.
    Meyerson HJ, Awadallah A, Pavlidakey P, Cooper K, Honda K, Miedler J. Follicular center helper T-cell (TFH) marker positive mycosis fungoides/Sezary syndrome. Mod Pathol. 2013;26(1):32–43.PubMedCrossRefGoogle Scholar
  109. 109.
    Bosisio FM, Cerroni L. Expression of T-follicular helper markers in sequential biopsies of progressive mycosis fungoides and other primary cutaneous T-cell lymphomas. Am J Dermatopathol. 2015;37(2):115–21.PubMedCrossRefGoogle Scholar
  110. 110.
    McGirt LY, Jia P, Baerenwald DA, Duszynski RJ, Dahlman KB, Zic JA, Zwerner JP, Hucks D, Dave U, Zhao Z, et al. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood. 2015;126(4):508–19.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Choi J, Goh G, Walradt T, Hong BS, Bunick CG, Chen K, Bjornson RD, Maman Y, Wang T, Tordoff J, et al. Genomic landscape of cutaneous T cell lymphoma. Nat Genet. 2015;47(9):1011–9.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Woollard WJ, Pullabhatla V, Lorenc A, Patel VM, Butler RM, Bayega A, Begum N, Bakr F, Dedhia K, Fisher J, et al. Candidate driver genes involved in genome maintenance and DNA repair in Sezary syndrome. Blood. 2016;127(26):3387–97.PubMedCrossRefGoogle Scholar
  113. 113.
    da Silva Almeida AC, Abate F, Khiabanian H, Martinez-Escala E, Guitart J, Tensen CP, Vermeer MH, Rabadan R, Ferrando A, Palomero T. The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. Nat Genet. 2015;47(12):1465–70.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Kiel MJ, Sahasrabuddhe AA, Rolland DC, Velusamy T, Chung F, Schaller M, Bailey NG, Betz BL, Miranda RN, Porcu P, et al. Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sezary syndrome. Nat Commun. 2015;6:8470.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Klemke CD, Booken N, Weiss C, Nicolay JP, Goerdt S, Felcht M, Geraud C, Kempf W, Assaf C, Ortonne N, et al. Histopathological and immunophenotypical criteria for the diagnosis of Sezary syndrome in differentiation from other erythrodermic skin diseases: a European Organisation for Research and Treatment of Cancer (EORTC) Cutaneous Lymphoma Task Force Study of 97 cases. Br J Dermatol. 2015;173(1):93–105.PubMedCrossRefGoogle Scholar
  116. 116.
    Baseggio L, Berger F, Morel D, Delfau-Larue MH, Goedert G, Salles G, Magaud JP, Felman P. Identification of circulating CD10 positive T cells in angioimmunoblastic T-cell lymphoma. Leukemia. 2006;20(2):296–303.PubMedCrossRefGoogle Scholar
  117. 117.
    Loghavi S, Wang SA, Jeffrey Medeiros L, Jorgensen JL, Li X, Xu-Monette ZY, Miranda RN, Young KH. Immunophenotypic and diagnostic characterization of angioimmunoblastic T-cell lymphoma by advanced flow cytometric technology. Leuk Lymphoma. 2016;57(12):2804–12.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Matutes E, Brito-Babapulle V, Swansbury J, Ellis J, Morilla R, Dearden C, Sempere A, Catovsky D. Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia. Blood. 1991;78(12):3269–74.PubMedGoogle Scholar
  119. 119.
    Brito-Babapulle V, Catovsky D. Inversions and tandem translocations involving chromosome 14q11 and 14q32 in T-prolymphocytic leukemia and T-cell leukemias in patients with ataxia telangiectasia. Cancer Genet Cytogenet. 1991;55(1):1–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Taylor AM, Metcalfe JA, Thick J, Mak YF. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87(2):423–38.PubMedGoogle Scholar
  121. 121.
    Chen X, Cherian S. Immunophenotypic characterization of T-cell prolymphocytic leukemia. Am J Clin Pathol. 2013;140(5):727–35.PubMedCrossRefGoogle Scholar
  122. 122.
    Garand R, Goasguen J, Brizard A, Buisine J, Charpentier A, Claisse JF, Duchayne E, Lagrange M, Segonds C, Troussard X, et al. Indolent course as a relatively frequent presentation in T-prolymphocytic leukaemia. Groupe Francais d'Hematologie Cellulaire. Br J Haematol. 1998;103(2):488–94.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Krishnan B, Matutes E, Dearden C. Prolymphocytic leukemias. Semin Oncol. 2006;33(2):257–63.CrossRefPubMedGoogle Scholar
  124. 124.
    Yuille MR, Condie A, Stone EM, Wilsher J, Bradshaw PS, Brooks L, Catovsky D. TCL1 is activated by chromosomal rearrangement or by hypomethylation. Genes Chromosom Cancer. 2001;30(4):336–41.PubMedCrossRefGoogle Scholar
  125. 125.
    Pekarsky Y, Hallas C, Croce CM. Molecular basis of mature T-cell leukemia. JAMA. 2001;286(18):2308–14.PubMedCrossRefGoogle Scholar
  126. 126.
    Pekarsky Y, Hallas C, Croce CM. The role of TCL1 in human T-cell leukemia. Oncogene. 2001;20(40):5638–43.PubMedCrossRefGoogle Scholar
  127. 127.
    Herling M, Patel KA, Teitell MA, Konopleva M, Ravandi F, Kobayashi R, Jones D. High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia. Blood. 2008;111(1):328–37.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Feldman AL, Law M, Grogg KL, Thorland EC, Fink S, Kurtin PJ, Macon WR, Remstein ED, Dogan A. Incidence of TCR and TCL1 gene translocations and isochromosome 7q in peripheral T-cell lymphomas using fluorescence in situ hybridization. Am J Clin Pathol. 2008;130(2):178–85.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Gritti C, Dastot H, Soulier J, Janin A, Daniel MT, Madani A, Grimber G, Briand P, Sigaux F, Stern MH. Transgenic mice for MTCP1 develop T-cell prolymphocytic leukemia. Blood. 1998;92(2):368–73.PubMedGoogle Scholar
  130. 130.
    Maljaei SH, Brito-Babapulle V, Hiorns LR, Catovsky D. Abnormalities of chromosomes 8, 11, 14, and X in T-prolymphocytic leukemia studied by fluorescence in situ hybridization. Cancer Genet Cytogenet. 1998;103(2):110–6.PubMedCrossRefGoogle Scholar
  131. 131.
    Stilgenbauer S, Schaffner C, Litterst A, Liebisch P, Gilad S, Bar-Shira A, James MR, Lichter P, Dohner H. Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med. 1997;3(10):1155–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Vorechovsky I, Luo L, Dyer MJ, Catovsky D, Amlot PL, Yaxley JC, Foroni L, Hammarstrom L, Webster AD, Yuille MA. Clustering of missense mutations in the ataxia-telangiectasia gene in a sporadic T-cell leukaemia. Nat Genet. 1997;17(1):96–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Bellanger D, Jacquemin V, Chopin M, Pierron G, Bernard OA, Ghysdael J, Stern MH. Recurrent JAK1 and JAK3 somatic mutations in T-cell prolymphocytic leukemia. Leukemia. 2014;28(2):417–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Bergmann AK, Schneppenheim S, Seifert M, Betts MJ, Haake A, Lopez C, Maria Murga Penas E, Vater I, Jayne S, Dyer MJ, et al. Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia. Genes Chromosom Cancer. 2014;53(4):309–16.PubMedCrossRefGoogle Scholar
  135. 135.
    Lopez C, Bergmann AK, Paul U, Murga Penas EM, Nagel I, Betts MJ, Johansson P, Ritgen M, Baumann T, Aymerich M, et al. Genes encoding members of the JAK-STAT pathway or epigenetic regulators are recurrently mutated in T-cell prolymphocytic leukaemia. Br J Haematol. 2016;173(2):265–73.PubMedCrossRefGoogle Scholar
  136. 136.
    Phillips AA, Shapira I, Willim RD, Sanmugarajah J, Solomon WB, Horwitz SM, Savage DG, Bhagat G, Soff G, Zain JM, et al. A critical analysis of prognostic factors in North American patients with human T-cell lymphotropic virus type-1-associated adult T-cell leukemia/lymphoma: a multicenter clinicopathologic experience and new prognostic score. Cancer. 2010;116(14):3438–46.PubMedCrossRefGoogle Scholar
  137. 137.
    Matutes E. Adult T-cell leukaemia/lymphoma. J Clin Pathol. 2007;60(12):1373–7.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Murphy EL, Hanchard B, Figueroa JP, Gibbs WN, Lofters WS, Campbell M, Goedert JJ, Blattner WA. Modelling the risk of adult T-cell leukemia/lymphoma in persons infected with human T-lymphotropic virus type I. Int J Cancer. 1989;43(2):250–3.PubMedCrossRefGoogle Scholar
  139. 139.
    Matsuoka M. Human T-cell leukemia virus type I (HTLV-I) infection and the onset of adult T-cell leukemia (ATL). Retrovirology. 2005;2:27.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Bunn PA Jr, Schechter GP, Jaffe E, Blayney D, Young RC, Matthews MJ, Blattner W, Broder S, Robert-Guroff M, Gallo RC. Clinical course of retrovirus-associated adult T-cell lymphoma in the United States. N Engl J Med. 1983;309(5):257–64.PubMedCrossRefGoogle Scholar
  141. 141.
    Katsuya H, Ishitsuka K, Utsunomiya A, Hanada S, Eto T, Moriuchi Y, Saburi Y, Miyahara M, Sueoka E, Uike N, et al. Treatment and survival among 1594 patients with ATL. Blood. 2015;126(24):2570–7.PubMedCrossRefGoogle Scholar
  142. 142.
    Sawada Y, Hino R, Hama K, Ohmori S, Fueki H, Yamada S, Fukamachi S, Tajiri M, Kubo R, Yoshioka M, et al. Type of skin eruption is an independent prognostic indicator for adult T-cell leukemia/lymphoma. Blood. 2011;117(15):3961–7.PubMedCrossRefGoogle Scholar
  143. 143.
    Takasaki Y, Iwanaga M, Imaizumi Y, Tawara M, Joh T, Kohno T, Yamada Y, Kamihira S, Ikeda S, Miyazaki Y, et al. Long-term study of indolent adult T-cell leukemia-lymphoma. Blood. 2010;115(22):4337–43.PubMedCrossRefGoogle Scholar
  144. 144.
    Jaffe ES, Blattner WA, Blayney DW, Bunn PA Jr, Cossman J, Robert-Guroff M, Gallo RC. The pathologic spectrum of adult T-cell leukemia/lymphoma in the United States. Human T-cell leukemia/lymphoma virus-associated lymphoid malignancies. Am J Surg Pathol. 1984;8(4):263–75.PubMedCrossRefGoogle Scholar
  145. 145.
    Duggan DB, Ehrlich GD, Davey FP, Kwok S, Sninsky J, Goldberg J, Baltrucki L, Poiesz BJ. HTLV-I-induced lymphoma mimicking Hodgkin's disease. Diagnosis by polymerase chain reaction amplification of specific HTLV-I sequences in tumor DNA. Blood. 1988;71(4):1027–32.PubMedGoogle Scholar
  146. 146.
    Kagdi HH, Demontis MA, Fields PA, Ramos JC, Bangham CR, Taylor GP. Risk stratification of adult T-cell leukemia/lymphoma using immunophenotyping. Cancer Med. 2017;6(1):298–309.PubMedCrossRefGoogle Scholar
  147. 147.
    Itoyama T, Chaganti RS, Yamada Y, Tsukasaki K, Atogami S, Nakamura H, Tomonaga M, Ohshima K, Kikuchi M, Sadamori N. Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area, Nagasaki. Blood. 2001;97(11):3612–20.PubMedCrossRefGoogle Scholar
  148. 148.
    Kamada N, Sakurai M, Miyamoto K, Sanada I, Sadamori N, Fukuhara S, Abe S, Shiraishi Y, Abe T, Kaneko Y, et al. Chromosome abnormalities in adult T-cell leukemia/lymphoma: a karyotype review committee report. Cancer Res. 1992;52(6):1481–93.PubMedGoogle Scholar
  149. 149.
    Watanabe T. Adult T-cell leukemia (ATL): molecular basis for clonal expansion and transformation of HTLV-1-infected T cells. Blood. 2017;129(9):1071–81.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Onciu M, Behm FG, Raimondi SC, Moore S, Harwood EL, Pui CH, Sandlund JT. ALK-positive anaplastic large cell lymphoma with leukemic peripheral blood involvement is a clinicopathologic entity with an unfavorable prognosis. Report of three cases and review of the literature. Am J Clin Pathol. 2003;120(4):617–25.PubMedCrossRefGoogle Scholar
  151. 151.
    van den Berg H, Noorduyn A, van Kuilenburg AB, Kroes W, de Jong D. Leukaemic expression of anaplastic large cell lymphoma with 46,XX,ins(2;5)(p23;q15q35) in a child with dihydropyrimidine dehydrogenase deficiency. Leukemia. 2000;14(4):769–70.PubMedCrossRefGoogle Scholar
  152. 152.
    Bayle C, Charpentier A, Duchayne E, Manel AM, Pages MP, Robert A, Lamant L, Dastugue N, Bertrand Y, Dijoud F, et al. Leukaemic presentation of small cell variant anaplastic large cell lymphoma: report of four cases. Br J Haematol. 1999;104(4):680–8.PubMedCrossRefGoogle Scholar
  153. 153.
    Ok CY, Wang SA, Amin HM. Leukemic phase of ALK(+) anaplastic large-cell lymphoma, small-cell variant: clinicopathologic pitfalls of a rare entity. Clin Lymphoma Myeloma Leuk. 2014;14(4):e123–6.PubMedCrossRefGoogle Scholar
  154. 154.
    Awaya N, Mori S, Takeuchi H, Mori S, Sugano Y, Kamata T, Takeuchi T, Abe T. CD30 and the NPM-ALK fusion protein (p80) are differentially expressed between peripheral blood and bone marrow in primary small cell variant of anaplastic large cell lymphoma. Am J Hematol. 2002;69(3):200–4.PubMedCrossRefGoogle Scholar
  155. 155.
    Juco J, Holden JT, Mann KP, Kelley LG, Li S. Immunophenotypic analysis of anaplastic large cell lymphoma by flow cytometry. Am J Clin Pathol. 2003;119(2):205–12.PubMedCrossRefGoogle Scholar
  156. 156.
    Bernt KM, Armstrong SA. Leukemia stem cells and human acute lymphoblastic leukemia. Semin Hematol. 2009;46(1):33–8.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Yamazaki H, Nishida H, Iwata S, Dang NH, Morimoto C. CD90 and CD110 correlate with cancer stem cell potentials in human T-acute lymphoblastic leukemia cells. Biochem Biophys Res Commun. 2009;383(2):172–7.PubMedCrossRefGoogle Scholar
  158. 158.
    Goldberg JM, Silverman LB, Levy DE, Dalton VK, Gelber RD, Lehmann L, Cohen HJ, Sallan SE, Asselin BL. Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol. 2003;21(19):3616–22.PubMedCrossRefGoogle Scholar
  159. 159.
    Inhorn RC, Aster JC, Roach SA, Slapak CA, Soiffer R, Tantravahi R, Stone RM. A syndrome of lymphoblastic lymphoma, eosinophilia, and myeloid hyperplasia/malignancy associated with t(8;13)(p11;q11): description of a distinctive clinicopathologic entity. Blood. 1995;85(7):1881–7.PubMedGoogle Scholar
  160. 160.
    Zhou Y, Fan X, Routbort M, Cameron Yin C, Singh R, Bueso-Ramos C, Thomas DA, Milton DR, Medeiros LJ, Lin P. Absence of terminal deoxynucleotidyl transferase expression identifies a subset of high-risk adult T-lymphoblastic leukemia/lymphoma. Mod Pathol. 2013;26(10):1338–45.PubMedCrossRefGoogle Scholar
  161. 161.
    Hann IM, Richards SM, Eden OB, Hill FG. Analysis of the immunophenotype of children treated on the Medical Research Council United Kingdom Acute Lymphoblastic Leukaemia Trial XI (MRC UKALLXI). Medical Research Council Childhood Leukaemia Working Party. Leukemia. 1998;12(8):1249–55.PubMedCrossRefGoogle Scholar
  162. 162.
    Paietta E, Ferrando AA, Neuberg D, Bennett JM, Racevskis J, Lazarus H, Dewald G, Rowe JM, Wiernik PH, Tallman MS, et al. Activating FLT3 mutations in CD117/KIT(+) T-cell acute lymphoblastic leukemias. Blood. 2004;104(2):558–60.PubMedCrossRefGoogle Scholar
  163. 163.
    Pilozzi E, Pulford K, Jones M, Muller-Hermelink HK, Falini B, Ralfkiaer E, Pileri S, Pezzella F, De Wolf-Peeters C, Arber D, et al. Co-expression of CD79a (JCB117) and CD3 by lymphoblastic lymphoma. J Pathol. 1998;186(2):140–3.PubMedCrossRefGoogle Scholar
  164. 164.
    Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, van’t Veer MB. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6.PubMedGoogle Scholar
  165. 165.
    Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, Cheng C, Su X, Rubnitz JE, Basso G, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Jain N, Lamb AV, O'Brien S, Ravandi F, Konopleva M, Jabbour E, Zuo Z, Jorgensen J, Lin P, Pierce S, et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood. 2016;127(15):1863–9.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Guo RJ, Bahmanyar M, Minden MD, Chang H. CD33, not early precursor T-cell phenotype, is associated with adverse outcome in adult T-cell acute lymphoblastic leukaemia. Br J Haematol. 2016;172(5):823–5.PubMedCrossRefGoogle Scholar
  168. 168.
    Patrick K, Wade R, Goulden N, Mitchell C, Moorman AV, Rowntree C, Jenkinson S, Hough R, Vora A. Outcome for children and young people with early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol. 2014;166(3):421–4.PubMedCrossRefGoogle Scholar
  169. 169.
    Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia. 2006;20(9):1496–510.PubMedCrossRefGoogle Scholar
  170. 170.
    Han X, Bueso-Ramos CE. Precursor T-cell acute lymphoblastic leukemia/lymphoblastic lymphoma and acute biphenotypic leukemias. Am J Clin Pathol. 2007;127(4):528–44.PubMedCrossRefGoogle Scholar
  171. 171.
    Szczepanski T, Pongers-Willemse MJ, Langerak AW, Harts WA, Wijkhuijs AJ, van Wering ER, van Dongen JJ. Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor alpha beta lineage. Blood. 1999;93(12):4079–85.PubMedGoogle Scholar
  172. 172.
    Weng AP, Ferrando AA, Lee W, JPt M, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71.PubMedCrossRefGoogle Scholar
  173. 173.
    Malyukova A, Dohda T, von der Lehr N, Akhoondi S, Corcoran M, Heyman M, Spruck C, Grander D, Lendahl U, Sangfelt O. The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res. 2007;67(12):5611–6.PubMedCrossRefGoogle Scholar
  174. 174.
    Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, Easton J, Chen X, Wang J, Rusch M, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157–63.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Neumann M, Heesch S, Schlee C, Schwartz S, Gokbuget N, Hoelzer D, Konstandin NP, Ksienzyk B, Vosberg S, Graf A, et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood. 2013;121(23):4749–52.PubMedCrossRefGoogle Scholar
  176. 176.
    Brunetti L, Di Battista V, Venanzi A, Schiavoni G, Martelli MP, Ascani S, Mecucci C, Tiacci E, Falini B. Blastic plasmacytoid dendritic cell neoplasm and chronic myelomonocytic leukemia: a shared clonal origin. Leukemia. 2017;31(5):1238–40.PubMedCrossRefGoogle Scholar
  177. 177.
    Ohgami RS, Arber DA, Zehnder JL, Natkunam Y, Warnke RA. Indolent T-lymphoblastic proliferation (iT-LBP): a review of clinical and pathologic features and distinction from malignant T-lymphoblastic lymphoma. Adv Anat Pathol. 2013;20(3):137–40.PubMedCrossRefGoogle Scholar
  178. 178.
    Ohgami RS, Zhao S, Ohgami JK, Leavitt MO, Zehnder JL, West RB, Arber DA, Natkunam Y, Warnke RA. TdT+ T-lymphoblastic populations are increased in Castleman disease, in Castleman disease in association with follicular dendritic cell tumors, and in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol. 2012;36(11):1619–28.PubMedCrossRefGoogle Scholar
  179. 179.
    Kansal R, Nathwani BN, Yiakoumis X, Moschogiannis M, Sachanas S, Stefanaki K, Pangalis GA. Exuberant cortical thymocyte proliferation mimicking T-lymphoblastic lymphoma within recurrent large inguinal lymph node masses of localized Castleman disease. Hum Pathol. 2015;46(7):1057–61.PubMedCrossRefGoogle Scholar
  180. 180.
    Nathwani BN, Kansal R, Yiakoumis X, Pangalis GA. Indolent T-lymphoblastic proliferation: a name with specific meaning--reply. Hum Pathol. 2015;46(11):1786–7.PubMedCrossRefGoogle Scholar
  181. 181.
    Ohgami RS, Natkunam Y, Warnke RA. Indolent T-lymphoblastic proliferation: a name with specific meaning. Hum Pathol. 2015;46(11):1785–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations