Design of the Game-Based Learning Environment “Dudeman & Sidegirl: Operation Clean World,” a Numerical Magnitude Processing Training

  • Sarah LinsenEmail author
  • Bieke MaertensEmail author
  • Jelle Husson
  • Lieven Van den Audenaeren
  • Jeroen Wauters
  • Bert Reynvoet
  • Bert De Smedt
  • Lieven Verschaffel
  • Jan Elen
Part of the Advances in Game-Based Learning book series (AGBL)


Numerical magnitude processing has been shown to play a crucial role in the development of mathematical ability and intervention studies have revealed that training children’s numerical magnitude processing has positive effects on their numerical magnitude processing skills and mathematics achievement. However, from these intervention studies, it remains unclear whether numerical magnitude processing interventions should focus on training with a numerical magnitude comparison or a number line estimation task. It also remains to be determined whether there is a different impact of training symbolic versus nonsymbolic numerical magnitude processing skills. In order to answer these two questions, we developed four game-based learning environments, using the storyline of “Dudeman & Sidegirl: Operation clean world”. The first two game-based learning environments comprise either a numerical magnitude comparison or a number line estimation training and the last two game-based learning environments stimulate either the processing of symbolic or nonsymbolic numerical magnitudes.


Game-based learning environment Numerical magnitude processing Mathematical achievement Educational intervention Design principles 



This research was supported by grant GOA 2012/010 of the Research Fund KU Leuven, Belgium. We would like to thank all participating children and teachers.


  1. Ashcraft, M. H., & Moore, A. M. (2012). Cognitive processes of numerical estimation in children. Journal of Experimental Child Psychology, 111, 246–267. doi: 10.1016/j.jecp.2011.08.005.CrossRefGoogle Scholar
  2. Bailey, D. H., Siegler, R. S., & Geary, D. C. (2014). Early predictors of middle school fraction knowledge. Developmental Science, 17(5), 775–785.CrossRefGoogle Scholar
  3. Barth, H., & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14, 125–135.CrossRefGoogle Scholar
  4. Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental Psychology, 46, 545–551.CrossRefGoogle Scholar
  5. Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41, 189–201.CrossRefGoogle Scholar
  6. Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79, 1016–1031.CrossRefGoogle Scholar
  7. Bugden, S., & Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition, 118, 32–44. doi: 10.1016/j.cognition.2010.09.005.CrossRefGoogle Scholar
  8. Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012). A systematic literature review of empirical evidence on computer games and serious games. Computers & Education, 59, 661–686.CrossRefGoogle Scholar
  9. De Smedt, B., & Gilmore, C. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108, 278–292.CrossRefGoogle Scholar
  10. De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). The relationship between symbolic and non-symbolic numerical magnitude processing and the typical and atypical development of mathematics. A review of evidence from brain and behaviour. Trends in Neuroscience and Education, 2, 48–55.CrossRefGoogle Scholar
  11. De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103, 469–479.CrossRefGoogle Scholar
  12. Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.CrossRefGoogle Scholar
  13. Dehaene, S. (1997). The number sense: How the mind creates mathematics. London, England: The Penguin Press.Google Scholar
  14. Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74.CrossRefGoogle Scholar
  15. Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation and learning: A research and practice model. Simulation & Gaming, 33, 441–467.CrossRefGoogle Scholar
  16. Griffin, S. (2004). Building number sense with Number Worlds: A mathematics program for young children. Early Childhood Research Quarterly, 19, 173–180.CrossRefGoogle Scholar
  17. Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665–668.CrossRefGoogle Scholar
  18. Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 17–29.CrossRefGoogle Scholar
  19. Jordan, N. C., Glutting, J., Dyson, N., Hassinger-Das, B., & Irwin, C. (2012). Building kindergartners’ number sense: A randomized controlled study. Journal of Educational Psychology, 104, 647–660.CrossRefGoogle Scholar
  20. Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., … von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. Neuroimage, 57, 782–795.Google Scholar
  21. Landerl, K., & Kölle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of Experimental Child Psychology, 103, 546–565. doi: 10.1016/j.jecp.2008.12.006.CrossRefGoogle Scholar
  22. Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78, 1723–1743.CrossRefGoogle Scholar
  23. Lee, S. S., & Lee, Y. H. K. (1991). Effects of learner-control versus program-control strategies on computer-aided learning of chemistry problems: For acquisition or review? Journal of Educational Psychology, 83(4), 491–498.CrossRefGoogle Scholar
  24. Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14, 1292–1300. doi: 10.1111/j.1467-7687.2011.01080.x.CrossRefGoogle Scholar
  25. Linsen, S., Verschaffel, L., Reynvoet, B., & De Smedt, B. (2014). The association between children’s numerical magnitude processing and mental multi-digit subtraction. Acta Psychologica, 145, 75–83.CrossRefGoogle Scholar
  26. Lonnemann, J., Linkersdörfer, J., Hasselhorn, M., & Lindberg, S. (2011). Symbolic and non-symbolic distance effects in children and their connection with arithmetic skills. Journal of Neurolinguistics, 24, 583–591. doi: 10.1016/j.jneuroling.2011.02.004.CrossRefGoogle Scholar
  27. Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS One, 6, 1–8.CrossRefGoogle Scholar
  28. Moreno, R., & Mayer, E. R. (2002). Verbal redundancy in multimedia learning: When reading helps listening. Journal of Educational Psychology, 94, 156–163.CrossRefGoogle Scholar
  29. Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103, 490–502.CrossRefGoogle Scholar
  30. Mussolin, C., Mejias, S., & Noël, M. P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115, 10–25. doi: 10.1016/j.cognition.2009.10.006.CrossRefGoogle Scholar
  31. Nielsen, J. (1995, January 1). 10 Usability heuristics for user interface design. Retrieved from
  32. Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact or approximate mental representations of number can enhance first-grade students’ basic number processing and arithmetic skills. Learning and Instruction, 23, 125–135.CrossRefGoogle Scholar
  33. Ramani, G. B., & Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board games. Child Development, 79, 375–394.CrossRefGoogle Scholar
  34. Ramani, G. B., & Siegler, R. S. (2011). Reducing the gap in numerical knowledge between low- and middle-income preschoolers. Journal of Applied Developmental Psychology, 32, 146–159.CrossRefGoogle Scholar
  35. Ramani, G. B., Siegler, R. S., & Hitti, A. (2012). Taking it to the classroom: Number board games as a small group learning activity. Journal of Educational Psychology, 104, 661–672.CrossRefGoogle Scholar
  36. Räsänen, P., Salminen, J., Wilson, A. J., Aunio, P., & Dehaene, S. (2009). Computer-assisted intervention for children with low numeracy skills. Cognitive Development, 24, 450–472.CrossRefGoogle Scholar
  37. Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102, 361–395. doi: 10.1016/j.cognition.2006.01.005.CrossRefGoogle Scholar
  38. Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30, 344–357.CrossRefGoogle Scholar
  39. Sasanguie, D., & Reynvoet, B. (2013). Number comparison and number line estimation rely on different mechanisms. Psychologica Belgica, 53(4), 17–35.CrossRefGoogle Scholar
  40. Sasanguie, D., Van den Bussche, E., & Reynvoet, B. (2012). Predictors for mathematics achievement? Evidence from a longitudinal study. Mind, Brain and Education, 6, 119–128.CrossRefGoogle Scholar
  41. Scheiter, K., & Gerjets, P. (2007). Learner control in hypermedia environments. Educational Psychology Review, 19, 285–307.CrossRefGoogle Scholar
  42. Sekuler, R., & Mierkiewicz, D. (1977). Children’s judgements of numerical inequality. Child Development, 48, 630–633.CrossRefGoogle Scholar
  43. Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428–444.CrossRefGoogle Scholar
  44. Siegler, R. S., & Ramani, G. B. (2009). Playing linear number board games—but not circular ones—improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101, 545–560.CrossRefGoogle Scholar
  45. Soltész, F., Szücs, D., & Szücs, L. (2010). Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: A developmental study. Behavioral and Brain Functions, 6, 1–14.CrossRefGoogle Scholar
  46. Van Merriënboer, J. J. G., Clark, R. E., & de Croock, M. B. M. (2002). Blueprints for complex learning: The 4C/ID-model. Educational Technology Research and Development, 50(2), 39–64.CrossRefGoogle Scholar
  47. Vanbinst, K., Ghesquière, P., & De Smedt, B. (2012). Numerical magnitude representations and individual differences in children’s arithmetic strategy use. Mind, Brain and Education, 6, 129–136.CrossRefGoogle Scholar
  48. Whyte, J. C., & Bull, R. (2008). Number games, magnitude representation, and basic number skills in pre-schoolers. Developmental Psychology, 44, 588–596.CrossRefGoogle Scholar
  49. Wilson, K. A., Bedwell, W. L., Lazzara, E. H., Salas, E., Burke, C. S., Estock, J. L., … Conkey, C. (2009). Relationships between game attributes and learning outcomes. Review and research proposals. Simulation & Gaming, 40, 217–266. doi: 10.1177/1046878108321866
  50. Wilson, A. J., Dehaene, S., Dubois, O., & Fayol, M. (2009). Effects of an adaptive game intervention on accessing number sense in low-socioeconomic-status kindergarten children. Mind, Brain, and Education, 3, 224–234.CrossRefGoogle Scholar
  51. Wilson, A. J., Dehaene, S., Pinel, P., Revkin, S. K., Cohen, L., & Cohen, D. (2006). Principles underlying the design of “The Number Race,” an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2(19), 1–14.Google Scholar
  52. Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The Number Race,” an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2, 20. doi: 10.1186/1744-9081-2-20.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sarah Linsen
    • 1
    • 2
    Email author
  • Bieke Maertens
    • 3
    • 4
    Email author
  • Jelle Husson
    • 5
  • Lieven Van den Audenaeren
    • 5
  • Jeroen Wauters
    • 5
  • Bert Reynvoet
    • 3
    • 4
  • Bert De Smedt
    • 1
  • Lieven Verschaffel
    • 1
  • Jan Elen
    • 1
  1. 1.Faculty of Psychology and Educational SciencesKU LeuvenLeuvenBelgium
  2. 2.Parenting and Special Education Research UnitKU LeuvenLeuvenBelgium
  3. 3.Faculty of Psychology and Educational Sciences @ KULAKKortrijkBelgium
  4. 4.Brain and CognitionKortrijkBelgium
  5. 5.e-Media LabKU LeuvenLeuvenBelgium

Personalised recommendations