Advertisement

International Conference on User Modeling, Adaptation, and Personalization

UMAP 2015: User Modeling, Adaptation and Personalization pp 343-349 | Cite as

On the Use of Cross-Domain User Preferences and Personality Traits in Collaborative Filtering

  • Ignacio Fernández-TobíasEmail author
  • Iván Cantador
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9146)

Abstract

We present a study comparing collaborative filtering methods enhanced with user personality traits and cross-domain ratings in multiple domains on a relatively large dataset. We show that incorporating additional ratings from source domains allows improving the accuracy of recommendations in a different target domain, and that in certain cases, it is better to enrich user models with both cross-domain ratings and personality trait information.

Keywords

Collaborative filtering Personality Cross-domain recommendation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel, F., Helder, E., Houben, G.-J., Henze, N., Krause, D.: Cross-system User Modeling and Personalization on the Social Web. UMUAI 23(2–3), 169–209 (2013)Google Scholar
  2. 2.
    Berkovsky, S., Kuflik, T., Ricci, F.: Mediation of User Models for Enhanced Personalization in Recommender Systems. UMUAI 18(3), 245–286 (2008)Google Scholar
  3. 3.
    Cantador, I., Fernández-Tobías, I., Bellogín, A.: Relating Personality Types with User Preferences in Multiple Entertainment Domains. EMPIRE 2013 (2013)Google Scholar
  4. 4.
    Fernández-Tobías, I., Cantador, I., Kaminskas, M., Ricci, F.: Cross-domain Recommender Systems: A Survey of the State of the Art. CERI 2012, 187–198 (2012)Google Scholar
  5. 5.
    Fernández-Tobías, I., Cantador, I.: Personality-aware collaborative filtering: an empirical study in multiple domains with facebook data. In: Hepp, M., Hoffner, Y. (eds.) EC-Web 2014. LNBIP, vol. 188, pp. 125–137. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Gao, S., Luo, H., Chen, D., Li, S., Gallinari, P., Guo, J.: Cross-domain recommendation via cluster-level latent factor model. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part II. LNCS, vol. 8189, pp. 161–176. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Hu, R., Pu, P.: A study on user perception of personality-based recommender systems. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 291–302. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Hu, R., Pu, P.: Enhancing Collaborative Filtering Systems with Personality Information. RecSys 2011, 197–204 (2011)Google Scholar
  9. 9.
    Rentfrow, P.J., Goldberg, L.R., Zilca, R.: Listening, Watching, and Reading: The Structure and Correlates of Entertainment Preferences. Journal of Personality 79(2), 223–258 (2011)CrossRefGoogle Scholar
  10. 10.
    Shapira, B., Rokach, L., Freilikhman, S.: Facebook Single and Cross Domain Data for Recommendation Systems. UMUAI 23(2–3), 211–247 (2013)Google Scholar
  11. 11.
    Shi, Y., Larson, M., Hanjalic, A.: Tags as bridges between domains: improving recommendation with tag-induced cross-domain collaborative filtering. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 305–316. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Tkalčič, M., Kunaver, M., Košir, A., Tasič, J.F.: Addressing the New User Problem with a Personality Based User Similarity Measure. UM4Motivation 2011 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Universidad Autónoma de MadridMadridSpain

Personalised recommendations