The Power of Trefftz Approximations: Finite Difference, Boundary Difference and Discontinuous Galerkin Methods; Nonreflecting Conditions and Non-Asymptotic Homogenization

  • Fritz Kretzschmar
  • Sascha M. Schnepp
  • Herbert Egger
  • Farzad Ahmadi
  • Nabil Nowak
  • Vadim A. Markel
  • Igor Tsukerman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9045)

Abstract

In problems of mathematical physics, Trefftz approximations by definition involve functions that satisfy the differential equation of the problem. The power and versatility of such approximations is illustrated with an overview of a number of application areas: (i) finite difference Trefftz schemes of arbitrarily high order; (ii) boundary difference Trefftz methods analogous to boundary integral equations but completely singularity-free; (iii) Discontinuous Galerkin (DG) Trefftz methods for Maxwell’s electrodynamics; (iv) numerical and analytical nonreflecting Trefftz boundary conditions; (v) non-asymptotic homogenization of electromagnetic and photonic metamaterials.

Keywords

Trefftz functions Finite difference schemes Boundary difference schemes Maxwell equations Wave propagation Effective medium theory Discontinuous galerkin methods Nonreflecting boundary conditions Metamaterials 

References

  1. 1.
    Tsukerman, I.: Computational Methods for Nanoscale Applications. Particles Plasmons and Waves. Springer, New York (2007)Google Scholar
  2. 2.
    Tsukerman, I.: Electromagnetic applications of a new finite-difference calculus. IEEE Trans. Magn. 41(7), 2206–2225 (2005)CrossRefGoogle Scholar
  3. 3.
    Tsukerman, I.: A class of difference schemes with flexible local approximation. J. Comput. Phys. 211(2), 659–699 (2006)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Tsukerman, I.: Trefftz difference schemes on irregular stencils. J. Comput. Phys. 229(8), 2948–2963 (2010)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Pinheiro, H., Webb, J., Tsukerman, I.: Flexible local approximation models for wave scattering in photonic crystal devices. IEEE Trans. Magn. 43(4), 1321–1324 (2007)CrossRefGoogle Scholar
  6. 6.
    Tsukerman, I., Čajko, F.: Photonic band structure computation using FLAME. IEEE Trans. Magn. 44(6), 1382–1385 (2008)CrossRefGoogle Scholar
  7. 7.
    Babuška, I., Ihlenburg, F., Paik, E.T., Sauter, S.A.: A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution. Comput. Meth. Appl. Mech. Eng. 128, 325–359 (1995)MATHCrossRefGoogle Scholar
  8. 8.
    Saltzer, C.: Discrete potential theory for two-dimensional Laplace and Poisson difference equations. Technical report 4086, National Advisory Committee on Aeronautics (1958)Google Scholar
  9. 9.
    Hsiao, G., Wendland, W.L.: Boundary Integral Equations. Springer, Heidelberg (2008)MATHCrossRefGoogle Scholar
  10. 10.
    Ryaben’kii, V.S.: Method of Difference Potentials and Its Applications. Springer Series in Computational Mathematics, vol. 30. Springer-Verlag, Berlin (2002)MATHCrossRefGoogle Scholar
  11. 11.
    Tsynkov, S.V.: On the definition of surface potentials for finite-difference operators. J. Sci. Comput. 18, 155–189 (2003)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Tsukerman, I.: A singularity-free boundary equation method for wave scattering. IEEE Trans. Antennas Propag. 59(2), 555–562 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Martinsson, P.: Fast multiscale methods for lattice equations. Ph.D. thesis, The University of Texas at Austin (2002)Google Scholar
  14. 14.
    Martinsson, P., Rodin, G.: Boundary algebraic equations for lattice problems. Proc. R. Soc. A - Math. Phys. Eng. Sci. 465(2108), 2489–2503 (2009)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    AlKhateeb, O., Tsukerman, I.: A boundary difference method for electromagnetic scattering problems with perfect conductors and corners. IEEE Trans. Antennas Propag. 61(10), 5117–5126 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Petersen, S., Farhat, C., Tezaur, R.: A space-time discontinuous Galerkin method for the solution of the wave equation in the time domain. Int. J. Numer. Meth. Eng. 78(3), 275–295 (2009)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kretzschmar, F., Schnepp, S., Tsukerman, I., Weiland, T.: Discontinuous Galerkin methods with Trefftz approximations. J. Comput. Appl. Math. 270, 211–222 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Egger, H., Kretzschmar, F., Schnepp, S., Tsukerman, I., Weiland, T.: Transparent boundary conditions in a Discontinuous Galerkin Trefftz method. Appl. Math. Comput. 270 (submitted, 2014). http://arxiv.org/abs/1410.1899
  19. 19.
    Fezoui, L., Lanteri, S., Lohrengel, S., Piperno, S.: Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM-Math. Model Numer. 39(6), 1149–1176 (2005)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Griesmair, T., Monk, P.: Discretization of the wave equation using continuous elements in time and a hybridizable discontinuous Galerkin method in space. J. Sci. Comput. 58, 472–498 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lilienthal, M., Schnepp, S., Weiland, T.: Non-dissipative space-time hp -discontinuous Galerkin method for the time-dependent maxwell equations. J. Comput. Phys. 275, 589–607 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Moiola, A., Hiptmair, R., Perugia, I.: Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 62(5), 809–837 (2011)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Hiptmair, R., Moiola, A., Perugia, I.: Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version. SIAM J. Numer. Anal. 49(1), 264–284 (2011)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Huber, M., Schöberl, J., Sinwel, A., Zaglmayr, S.: Simulation of diffraction in periodic media with a coupled finite element and plane wave approach. SIAM J. Sci. Comput. 31, 1500–1517 (2009)MATHCrossRefGoogle Scholar
  25. 25.
    Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 127, 363–379 (1996)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Teixeira, F.L., Chew, W.C.: General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media. IEEE Microwave Guided Wave Lett. 8, 223–225 (1998)CrossRefGoogle Scholar
  27. 27.
    Sacks, Z., Kingsland, D., Lee, R., Lee, J.F.: A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans. Antennas Propag. 43(12), 1460–1463 (1995)CrossRefGoogle Scholar
  28. 28.
    Gedney, S.D.: An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices. IEEE Trans. Antennas Propag. 44(12), 1630–1639 (1996)CrossRefGoogle Scholar
  29. 29.
    Collino, F., Monk, P.B.: Optimizing the perfectly matched layer. Comput. Meth. Appl. Mech. Eng. 164, 157–171 (1998)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Higdon, R.L.: Absorbing boundary conditions for difference approximations to the multidimensional wave equation. Math. Comput. 47(176), 437–459 (1986)MATHMathSciNetGoogle Scholar
  31. 31.
    Higdon, R.L.: Numerical absorbing boundary conditions for the wave equation. Math. Comput. 49(179), 65–90 (1987)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Bayliss, A., Turkel, E.: Radiation boundary-conditions for wave-like equations. Commun Pure Appl. Math. 33(6), 707–725 (1980)MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Bayliss, A., Gunzburger, M., Turkel, E.: Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J. Appl. Math. 42(2), 430–451 (1982)MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Hagstrom, T., Hariharan, S.I.: A formulation of asymptotic and exact boundary conditions using local operators. Appl. Numer. Math. 27(4), 403–416 (1998)MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Givoli, D.: High-order nonreflecting boundary conditions without high-order derivatives. J. Comput. Phys. 170(2), 849–870 (2001)MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Givoli, D., Neta, B.: High-order nonreflecting boundary conditions for the dispersive shallow water equations. J. Comput. Appl. Math. 158(1), 49–60 (2003)MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Hagstrom, T., Warburton, T.: A new auxiliary variable formulation of high-order local radiation boundary conditions: corner compatibility conditions and extensions to first-order systems. Wave Motion 39(4), 327–338 (2004)MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Zarmi, A., Turkel, E.: A general approach for high order absorbing boundary conditions for the Helmholtz equation. J. Comput. Phys. 242, 387–404 (2013)MATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Givoli, D.: High-order local non-reflecting boundary conditions: a review. Wave Motion 39(4), 319–326 (2004)MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Tsynkov, S.V.: Numerical solution of problems on unbounded domains. Rev. Appl. Numer. Math. 27, 465–532 (1998)MATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Hagstrom, T.: Radiation boundary conditions for the numerical simulation of waves. In: Iserlis, A. (ed.) Acta Numerica, vol. 8, pp. 47–106. Cambridge University Press, Cambridge (1999)Google Scholar
  42. 42.
    Gratkowski, S.: Asymptotyczne warunki brzegowe dla stacjonarnych zagadnień elektromagnetycznych w obszarach nieograniczonych - algorytmy metody elementów skończonych. Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego (2009)Google Scholar
  43. 43.
    Tsukerman, I.: A “Trefftz machine" for absorbing boundary conditions. Ann. Stat. 42(3), 1070–1101 (2014). http://arxiv.org/abs/1406.0224 CrossRefGoogle Scholar
  44. 44.
    Paganini, A., Scarabosio, L., Hiptmair, R., Tsukerman, I.: tz approximations: a new framework for nonreflecting boundary conditions (in preparation, 2015)Google Scholar
  45. 45.
    Soukoulis, C.M., Wegener, M.: Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011)Google Scholar
  46. 46.
    Bensoussan, A., Lions, J., Papanicolaou, G.: Asymptotic Methods in Periodic Media. Elsevier, North Holland (1978)Google Scholar
  47. 47.
    Bakhvalov, N.S., Panasenko, G.: Homogenisation: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials. Springer, The Netherlands (1989)MATHCrossRefGoogle Scholar
  48. 48.
    Milton, G.: The Theory of Composites. Cambridge University Press, Cambridge; New York (2002)MATHCrossRefGoogle Scholar
  49. 49.
    Bossavit, A., Griso, G., Miara, B.: Modelling of periodic electromagnetic structures bianisotropic materials with memory effects. J. Math. Pures Appl. 84(7), 819–850 (2005)MATHMathSciNetCrossRefGoogle Scholar
  50. 50.
    Tsukerman, I.: Negative refraction and the minimum lattice cell size. J. Opt. Soc. Am. B 25, 927–936 (2008)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Tsukerman, I., Markel, V.A.: A nonasymptotic homogenization theory for periodic electromagnetic structures. Proc. Royal Soc. A 470 2014.0245 (2014)Google Scholar
  52. 52.
    Tsukerman, I.: Effective parameters of metamaterials: a rigorous homogenization theory via Whitney interpolation. J. Opt. Soc. Am. B 28(3), 577–586 (2011)CrossRefGoogle Scholar
  53. 53.
    Pors, A., Tsukerman, I., Bozhevolnyi, S.I.: Effective constitutive parameters of plasmonic metamaterials: homogenization by dual field interpolation. Phys. Rev. E 84, 016609 (2011)CrossRefGoogle Scholar
  54. 54.
    Xiong, X.Y., Jiang, L.J., Markel, V.A., Tsukerman, I.: Surface waves in three-dimensional electromagnetic composites and their effect on homogenization. Opt. Express 21(9), 10412–10421 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fritz Kretzschmar
    • 1
    • 2
  • Sascha M. Schnepp
    • 3
  • Herbert Egger
    • 6
  • Farzad Ahmadi
    • 4
  • Nabil Nowak
    • 4
  • Vadim A. Markel
    • 5
  • Igor Tsukerman
    • 4
  1. 1.Graduate School of Computational EngineeringTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institut für Theorie Elektromagnetischer FelderTechnische Universitaet DarmstadtDarmstadtGermany
  3. 3.Institut Für GeophysikETH ZürichZürichSwitzerland
  4. 4.Department of Electrical and Computer EngineeringThe University of AkronAkronUSA
  5. 5.Graduate Group in Applied Mathematics and Computational Science, and Department of Radiology, Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  6. 6.Department of MathematicsTU DarmstadtDarmstadtGermany

Personalised recommendations