Design of Closed Photobioreactors for Algal Cultivation

  • Martin KollerEmail author


Apart from their indispensable role as solar-driven oxygen factories, microalgae act as powerful microbial cell factories for production of various intra- or extracellular bio-products like proteins, lipids, pigments, well-known and exotic carbohydrates, biopolyesters, antibiotics or bio-hydrogen. These products can serve the demands of various markets such as the fuel- and energy sector, cosmetic industry, pharmaceutical industry, convenience- and functional food, and agriculture, or even constitute novel raw-materials for manufacturing of biodegradable plastic materials.

Efficient output of these products by using selected microalgal species requires the adaptation of the cultivation system to the special requirements of different microalgae. Factors like protection against microbial contamination, optimized nutrient supply, tailored illumination, sufficient outgassing of the produced oxygen, and maintaining pH-value and temperature in the optimum range have to be taken into account when designing an algae-based production platform for bio-products.

Simple, well-known open cultivation systems are operating at typical natural environmental conditions which are far below the real biosynthetic potential of these microbial cell factories. As a common consequence, such systems only produce modest cell densities at low volumetric productivity. Closed systems allow for the adaptation of process conditions to the optimum values inherent in the different species, provide the possibility to implement more effective illumination systems, prevent water loss by evaporation, avoid the entrance of competing microbes into the system, and circumvent the release of the algal cells into the environment. Hence, high output for desired algal bio-products requires the development of sophisticated closed photobioreactor (PBR) systems; they are designed based both on deep understanding for microbial processes and on process engineering know-how. Such optimized design, mimicking nature’s strategies for light harvest, constitutes the pre-requisite for economic success of phototrophic biotechnology that now is already announced since decades. The chapter at hands offers a detailed overview of different used types of photobioreactors for cultivation of microalgae, highlighting their opportunities, advantages and constraints, devotes special attention to the scalability of different PBR systems, and provides examples for successful (semi)industrial implementations.


Air lift reactor Bioreactor façade Bubble column Closed reactor design Stirred tank reactor (STR) Cyanobacteria Flat panel Illumination Microalgae Modular systems Photobioreactor (PBR) Productivity Tubular reactor Vertical reactor 


  1. Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106(1):1–12PubMedCrossRefGoogle Scholar
  2. Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35(2):215–226CrossRefGoogle Scholar
  3. Azov Y (1982) Effect of pH on inorganic carbon uptake in algal cultures. Appl Environ Microbiol 43(6):1300–1306PubMedCentralPubMedGoogle Scholar
  4. Bajpai R, Zappi M, Dufreche S, Subramaniam R, Prokop A (2014) Status of algae as vehicles for commercial production of fuels and chemicals. In: Bajpai R, Prokop A, Zappi M (eds) Algal biorefineries volume 1: cultivation of cells and products. Springer, Dordrecht, pp 3–24CrossRefGoogle Scholar
  5. Barbosa MJ, Zijffers JW, Nisworo A, Vaes W, van Schoonhoven J, Wijffels RH (2005) Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat‐panel reactor using the A‐stat technique. Biotechnol Bioeng 89(2):233–242PubMedCrossRefGoogle Scholar
  6. Ben-Amotz A, Avron M (1983) On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72(3):593–597PubMedCentralPubMedCrossRefGoogle Scholar
  7. Berberoglu H, Yin J, Pilon L (2007) Light transfer in bubble sparged photobioreactors for H2 production and CO2 mitigation. Int J Hydrog Energy 32(13):2273–2285CrossRefGoogle Scholar
  8. Betula C, Campsis L, Sambucus S, Cornus D, Quercus L, Carya L (1986) Hosts of the parasitic alga Cephaleuros virescens in Louisiana and new host records for the continental United States. Plant Dis 70(11):1080–1083CrossRefGoogle Scholar
  9. Birmingham BC, Coleman JR, Colman B (1982) Measurement of photorespiration in algae. Plant Physiol 69(1):259–262PubMedCentralPubMedCrossRefGoogle Scholar
  10. Borowitzka MA (1996) Closed algal photobioreactors: Design considerations for large-scale systems. J Mar Biotechnol 4(4):185–191Google Scholar
  11. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, and fermenters. Prog Ind Microbiol 35:313–321CrossRefGoogle Scholar
  12. Borowitzka LJ, Brown AD (1974) The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. Arch Microbiol 96(1):37–52CrossRefGoogle Scholar
  13. Borowitzka LJ, Borowitzka MA, Moulton TP (1984) The mass culture of Dunaliella salina for fine chemicals: from laboratory to pilot plant. Hydrobiologia 116(117):115–134CrossRefGoogle Scholar
  14. Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108(4):766–776PubMedCrossRefGoogle Scholar
  15. Braunegg G, Lefebvre G, Renner G, Zeiser A, Haage G, Loidl-Lanthaler K (1995) Kinetics as a tool for polyhydroxyalkanoate production optimization. Can J Microbiol 41(13):239–248CrossRefGoogle Scholar
  16. Cardozo KH, Guaratini T, Barros MP, Falcão VR, Tonon A et al (2007) Metabolites from algae with economical impact. Comp Biochem Phys C 146(1):60–78CrossRefGoogle Scholar
  17. Castenholz RW (1969a) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33(4):476–504PubMedCentralPubMedGoogle Scholar
  18. Castenholz RW (1969b) The thermophylic cyanophytes of Iceland and the upper temperature limit. J Phycol 5(4):360–368CrossRefGoogle Scholar
  19. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81PubMedCrossRefGoogle Scholar
  20. Chini Zitelli G, Rodolfi L, Tredici MR (2000) Mass cultivation of marine microalgae under natural, mixed and artificial illumination. In: 4th European workshop on biotechnology of microalgae. Bergholz-Rehbrücke, GermanyGoogle Scholar
  21. Chini Zitelli G, Rodolfi L, Tredici MR (2003) Mass cultivation of Nannochloropsis sp. in annular reactors. J Appl Phycol 15(2–3):107–114CrossRefGoogle Scholar
  22. Chini Zitelli G, Somigli S, Rodolfi L, Tredici MR (2004) Outdoor mass cultivation of Isochrysis sp. in annular reactors. In: Abstracts of the first Latinoamerican Congress on Algal Biotechnology (CLABA), Buenos Aires, Argentina, 25–29 Oct 2004, p 45Google Scholar
  23. Chini Zittelli G, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261(3):932–943CrossRefGoogle Scholar
  24. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306PubMedCrossRefGoogle Scholar
  25. Collet P, Hélias A, Lardon L, Ras M, Goy RA, Steyer JP (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102(1):207–214PubMedCrossRefGoogle Scholar
  26. Concas A, Pisu M, Cao G (2010) Novel simulation model of the solar collector of BIOCOIL photobioreactors for CO2 sequestration with microalgae. Chem Eng J 157(2):297–303CrossRefGoogle Scholar
  27. Cotta F, Matschke M, Großmann J, Griehl C, Matthes S (2011) Verfahrenstechnische Aspekte eines flexiblen, tubulären Systems zur Algenproduktion (Process-related aspects of a flexible, tubular system for algae production); lecture at DECHEMA 2011Google Scholar
  28. Degen J, Uebele A, Retze A, Schmid-Staiger U, Trösch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92(2):89–94PubMedCrossRefGoogle Scholar
  29. Doucha J, Lívanský K (2014) High density outdoor microalgal culture. In: Bajpai R, Prokop A, Zappi M (eds) Algal biorefineries volume 1: cultivation of cells and products. Springer, Dordrecht, pp 147–173CrossRefGoogle Scholar
  30. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412CrossRefGoogle Scholar
  31. El-Shishtawy RM, Kawasaki S, Morimoto M (1997) Biological H2 production using a novel light-induced and diffused photoreactor. Biotechnol Tech 11(6):403–407CrossRefGoogle Scholar
  32. Fisher M, Pick U, Zamir A (1994) A salt-induced 60-kilodalton plasma membrane protein plays a potential role in the extreme halotolerance of the alga Dunaliella. Plant Physiol 106(4):1359–1365PubMedCentralPubMedGoogle Scholar
  33. Fulks W, Main KL (1991) Rotifer and microalgae culture systems. In: Fulks W, Main KL (eds) Proceedings of a U.S.-Asia workshop, The Oceanic Institute Honolulu, Hawaii, pp 3–52Google Scholar
  34. Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87(3):756–761CrossRefGoogle Scholar
  35. Ginzburg M (1988) Dunaliella: a green alga adapted to salt. Adv Bot Res 14:93–183CrossRefGoogle Scholar
  36. Gudin C, Chaumont D (1991) Cell fragility—the key problem of microalgae mass production in closed photobioreactors. Bioresour Technol 38(2):145–151CrossRefGoogle Scholar
  37. Hariskos I, Posten C (2014) Biorefinery of microalgae–opportunities and constraints for different production scenarios. Biotechnol J 9(6):739–752PubMedCrossRefGoogle Scholar
  38. Heijnen JJ, Hols J, Van Der Lans RGJM, Van Leeuwen HLJM, Mulder A, Weltevrede R (1997) A simple hydrodynamic model for the liquid circulation velocity in a full-scale two-and three-phase internal airlift reactor operating in the gas recirculation regime. Chem Eng Sci 52(15):2527–2540CrossRefGoogle Scholar
  39. Hoham RW (1975) Optimum temperatures and temperature ranges for growth of snow algae. Arct Alp Res 7:13–24CrossRefGoogle Scholar
  40. Hoham RW, Blinn DW (1979) Distribution of cryophilic algae in an arid region, the American Southwest. Phycologia 18(2):133–145CrossRefGoogle Scholar
  41. Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49(6):655–662CrossRefGoogle Scholar
  42. Imam SH, Gordon SH, Shogren RL, Tosteson TR, Govind NS, Greene RV (1999) Degradation of starch–poly (β-hydroxybutyrate-co-β-hydroxyvalerate) bioplastic in tropical coastal waters. Appl Environ Microbiol 65(2):431–437PubMedCentralPubMedGoogle Scholar
  43. Iqbal M, Grey D, Stepan-Sarkissian F, Fowler MW (1993) A flat-sided photobioreactor for culturing microalgae. Aquac Eng 12(3):183–190CrossRefGoogle Scholar
  44. Jacobi A, Steinweg C, Sastre RR, Posten C (2012) Advanced photobioreactor LED illumination system: scale‐down approach to study microalgal growth kinetics. Eng Life Sci 12(6):621–630CrossRefGoogle Scholar
  45. Jirka V, Šourek B, Pokorný J, Štys D, Papácek S, Masojídek J (2002) Microalgal ‘penthouse-roof’ photobioreactor based on solar concentrators-linear raster lenses. In: Renewable energy, extended abstracts of the World Renewable Energy Congress VII (WREC 2002), Cologne, Germany, 29, pp 359–360.Google Scholar
  46. Kol E (1969) The red snow of Greenland. II. Acta Bot Acad Sci Hung 15(3–4):281–289Google Scholar
  47. Koller M, Muhr A (2014) Continuous production mode as a viable process-engineering tool for efficient poly (hydroxyalkanoate)(PHA) bio-production. Chem Biochem Eng Q 28(1):65–77Google Scholar
  48. Koller M, Salerno A, Tuffner P, Koinigg M, Böchzelt H, Schober S, Pieber S, Schnitzer H, Mittelbach M, Braunegg G (2012) Characteristics and potential of micro algal cultivation strategies: a review. J Clean Prod 37:377–388CrossRefGoogle Scholar
  49. Koller M, Niebelschütz H, Braunegg G (2013) Strategies for recovery and purification of poly [(R)‐3‐hydroxyalkanoates](PHA) biopolyesters from surrounding biomass. Eng Life Sci 13(6):549–562CrossRefGoogle Scholar
  50. Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6(A):52–63CrossRefGoogle Scholar
  51. Léonard A, Rooke JC, Meunier CF, Sarmento H, Descy JP, Su BL (2010) Cyanobacteria immobilised in porous silica gels: exploring biocompatible synthesis routes for the development of photobioreactors. Energy Environ Sci 3(3):370–377CrossRefGoogle Scholar
  52. Leya T, Müller T, Ling HU, Fuhr G (2000) Taxonomy and biophysical properties of cryophilic microalgae and their environmental factors in northwest Spitsbergen, Svalbard. In: Proceedings of the 57th Eastern snow conference, Syracuse, New York, pp 199–205Google Scholar
  53. Li Y, Horsman M, Wu N, Lan CQ, Dubois‐Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820PubMedGoogle Scholar
  54. Li T, Zheng Y, Yu L, Chen S (2013) High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour Technol 131:60–67PubMedCrossRefGoogle Scholar
  55. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31(7):1043–1049PubMedCrossRefGoogle Scholar
  56. Ling HU, Seppelt RD (1993) Snow algae of the Windmill Islands, continental Antarctica. 2. Chloromonas rubroleosa sp. nov. (Volvocales, Chlorophyta), an alga of red snow. Eur J Phycol 28(2):77–84CrossRefGoogle Scholar
  57. Lubián LM, Montero O, Moreno-Garrido I, Huertas IE, Sobrino C, González-del Valle M, Parés G (2000) Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J Appl Phycol 12(3–5):249–255CrossRefGoogle Scholar
  58. Mann G, Schlegel M, Schumann R, Sakalauskas A (2009) Biogas-conditioning with microalgae. Agron Res 7(1):33–38Google Scholar
  59. Masojídek J, Sergejevová M, Rottnerová K, Jirka V, Korečko J, Kopecký J, Zaťková I, Torzillo G, Štys D (2009) A two-stage solar photobioreactor for cultivation of microalgae based on solar concentrators. J Appl Phycol 21(1):55–63CrossRefGoogle Scholar
  60. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232CrossRefGoogle Scholar
  61. Merchuk JC, Garcia-Camacho F, Molina-Grima E (2007) Photobioreactor design and fluid dynamics. Chem Biochem Eng Q 21(4):345–355Google Scholar
  62. Mignot L, Junter GA, Labbe M (1989) A new type of immobilized-cell photobioreactor with internal illumination by optical fibres. Biotechnol Tech 3(5):299–304CrossRefGoogle Scholar
  63. Miron AS, Camacho FG, Gomez AC, Molina GE, Chisti Y (2000) Bubble column and airlift photobioreactors for algal culture. AIChE J 46:1872–1893CrossRefGoogle Scholar
  64. Mitra D, van Leeuwen JH, Lamsal B (2012) Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res 1(1):40–48CrossRefGoogle Scholar
  65. Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92(2):113–131PubMedCrossRefGoogle Scholar
  66. Morita M, Watanable Y, Saiki H (2000) Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol Bioeng 69(6):693–698PubMedCrossRefGoogle Scholar
  67. Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87(4):1291–1301PubMedCrossRefGoogle Scholar
  68. Ogbonna JC, Yada H, Masui H, Tanaka H (1996) A novel internally illuminated stirred tank photobioreactor for large-scale cultivation of photosynthetic cells. J Ferment Bioeng 82(1):61–67CrossRefGoogle Scholar
  69. Ogbonna JC, Soejima T, Tanaka H (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. Prog Ind Microbiol 35:289–297CrossRefGoogle Scholar
  70. Ogbonna KH, Aminigo RE, Abu GO (2007) Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp. Bioresour Technol 98(11):2207–2211CrossRefGoogle Scholar
  71. Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12(3–5):499–506CrossRefGoogle Scholar
  72. Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20(4):459–466PubMedCrossRefGoogle Scholar
  73. Olivieri G, Salatino P, Marzocchella A (2014) Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. J Chem Technol Biotechnol 89(2):178–195CrossRefGoogle Scholar
  74. Patel B, Tamburic B, Zemichael FW, Dechatiwongse P, Hellgardt K (2012) Algal biofuels: a credible prospective? ISRN Renew Energy. Article ID 631574, 14 ppGoogle Scholar
  75. Phang SM, Kim-Chong O (1988) Algal biomass production in digested palm oil mill effluent. Biol Waste 25(3):177–191CrossRefGoogle Scholar
  76. Posten C (2009) Design principles of photo‐bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177CrossRefGoogle Scholar
  77. Prokop A, Řičica J (1968) Chlorella pyrenoidosa 7-11-05 in batch and in homogeneous continuous culture under autotrophic conditions. Folia Microbiol 13(5):362–372CrossRefGoogle Scholar
  78. Prokop A, Řičica J, Málek I, Thomas J (1967) Growth and physiological characteristics of a high temperature strain of Chlorella pyrenoidosa in continuous culture. Nature 214:1234–1235PubMedCrossRefGoogle Scholar
  79. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293PubMedCrossRefGoogle Scholar
  80. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648PubMedCrossRefGoogle Scholar
  81. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501PubMedCentralPubMedCrossRefGoogle Scholar
  82. Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98(3):560–564PubMedCrossRefGoogle Scholar
  83. Raven JA, Beardall J (2003) Carbon acquisition mechanisms of algae: carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Anthony WD, Larkum SE, Douglas JA (eds_ Photosynthesis in algae. Springer, Dordrecht, pp 225–244Google Scholar
  84. Ravikumar R (2014) Micro algae in open raceways. In: Bajpai R, Prokop A, Zappi M (eds) Algal biorefineries volume 1: cultivation of cells and products. Springer, Dordrecht, pp 127–146CrossRefGoogle Scholar
  85. Reddy CSK, Ghai R, Kalia V (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87(2):137–146PubMedCrossRefGoogle Scholar
  86. Remias D, Lütz-Meindl U, Lütz C (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol 40(3):259–268CrossRefGoogle Scholar
  87. Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5(3):327–332CrossRefGoogle Scholar
  88. Rodolfi L, Biondi N, Piccardi R, Ferroni P, Tredici MR (2002) Effect of temperature on growth and bioactivity of two Nostoc strains in mass culture. In: Abstracts of the 9th international conference on applied algology, 26–30 May 2002, Almeria, Spain (2002), p 21Google Scholar
  89. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor. Biotechnol Bioeng 102(1):100–112PubMedCrossRefGoogle Scholar
  90. Rogers JN, Rosenberg JN, Guzman BJ, Oh VH, Mimbela LE, Ghassemi A, Betenbaugh MJ, Oyler GA, Donohue MD (2014) A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res 4:76–88CrossRefGoogle Scholar
  91. Šantek B, Ivančić M, Horvat P, Novak S, Marić V (2006) Horizontal tubular bioreactors in biotechnology. Chem Biochem Eng Q 20(4):389–399Google Scholar
  92. Sato T, Usui S, Tsuchiya Y, Kondo Y (2006) Invention of outdoor closed type photobioreactor for microalgae. Energy Convers Manag 47(6):791–799CrossRefGoogle Scholar
  93. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286PubMedCrossRefGoogle Scholar
  94. Shi XM, Chen F, Yuan JP, Chen H (1997) Heterotrophic production of lutein by selected Chlorella strains. J Appl Phycol 9(5):445–450CrossRefGoogle Scholar
  95. Shi XM, Zhang XW, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27(3):312–318PubMedCrossRefGoogle Scholar
  96. Sierra E, Acien FG, Fernández JM, García JL, González C, Molina E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138(1):136–147CrossRefGoogle Scholar
  97. Sim TS, Goh A (1988) Ecology of microalgae in a high rate pond for piggery effluent purification in Singapore. MIRCEN J Appl Microbiol 4(3):285–297CrossRefGoogle Scholar
  98. Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production–a review. Renew Sust Energ Rev 16(4):2347–2353CrossRefGoogle Scholar
  99. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96PubMedCrossRefGoogle Scholar
  100. Stein JR, Bisalputra T (1969) Crystalline bodies in an algal chloroplast. Can J Bot 47(2):233–236CrossRefGoogle Scholar
  101. Tatsuzawa H, Takizawa E, Wada M, Yamamoto Y (1996) Fatty acid and lipid composition of the acidophilic green alga Chlamydomonas sp. 1. J Phycol 32(4):598–601CrossRefGoogle Scholar
  102. Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11(1):61–74CrossRefGoogle Scholar
  103. Travieso L, Hall DO, Rao KK, Benıtez F, Sánchez E, Borja R (2001) A helical tubular photobioreactor producing Spirulina in a semicontinuous mode. Int Biodeterior Biodegrad 47(3):151–155CrossRefGoogle Scholar
  104. Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd, Oxford/Ames/Carlton, pp 178–214Google Scholar
  105. Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57(2):187–197PubMedCrossRefGoogle Scholar
  106. Tredici MR, Zittelli GC, Benemann JR (1998) A tubular integral gas exchange photobioreactor for biological hydrogen production. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, London, pp 391–401Google Scholar
  107. Trotta P (1981) A simple and inexpensive system for continuous monoxenic mass culture of marine microalgae. Aquaculture 22:383–387CrossRefGoogle Scholar
  108. Tsygankov AA, Hall DO, Liu J, Rao KK (1998) An automated helical photobioreactor incorporating cyanobacteria for continuous hydrogen production. In: Zaborsky OR (ed) Biohydrogen. Plenum Press, London, pp 431–440Google Scholar
  109. Uggetti E, Sialve B, Trably E, Steyer JP (2014) Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels Bioprod Biorefin 8(4):516–529CrossRefGoogle Scholar
  110. Velea S, Ilie L, Stepan E, Chiurtu R (2014) New photobioreactor design for enhancing the photosynthetic productivity of Chlorella homosphaera culture. Rev Chim Bucharest 65(1):56–60Google Scholar
  111. Vona V, Di Martino RV, Lobosco O, Carfagna S, Esposito S, Rigano C (2004) Temperature responses of growth, photosynthesis, respiration and NADH: nitrate reductase in cryophilic and mesophilic algae. New Phytol 163(2):325–331CrossRefGoogle Scholar
  112. Wang DZ (2008) Neurotoxins from marine dinoflagellates: a brief review. Mar Drugs 6(2):349–371PubMedCentralPubMedCrossRefGoogle Scholar
  113. Wang B, Lan CQ, Horsman M (2012) Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv 30(4):904–912PubMedCrossRefGoogle Scholar
  114. Willson B (2009) The Solix AGS system: a low-cost photobioreactor system for production of biofuels from microalgae. IOP Conf Ser Earth Environ Sci 6:192015. doi: 10.1088/1755-1307/6/9/192015
  115. Yamaoka T, Satoh K, Katoh S (1978) Photosynthetic activities of a thermophilic blue-green alga. Plant Cell Physiol 19(6):943–954Google Scholar
  116. Zhang K, Kurano N, Miyachi S (2002) Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess Biosyst Eng 25(2):97–101PubMedCrossRefGoogle Scholar
  117. Zijffers JWF, Salim S, Janssen M, Tramper J, Wijffels RH (2008) Capturing sunlight into a photobioreactor: ray tracing simulations of the propagation of light from capture to distribution into the reactor. Chem Eng J 145(2):316–327CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Chemistry, Department of Physical and Theoretical Chemistry, NAWI GrazUniversity of GrazGrazAustria

Personalised recommendations