Nanoremediation Coupled to Electrokinetics for PCB Removal from Soil

  • Helena I. Gomes
  • Guangping Fan
  • Lisbeth M. Ottosen
  • Celia Dias-Ferreira
  • Alexandra B. Ribeiro


Polychlorinated biphenyls (PCB) are persistent organic pollutants (POP) that accumulate in soils and sediments. Currently, there is a need to develop new, sustainable, and cost-effective solutions for the remediation of PCB-contaminated soils. Zero valent iron nanoparticles (nZVI) were considered promising for the remediation of PCB-contaminated soils and groundwater. However, critical issues related to their limited mobility remain unsolved. Direct current can be used to enhance the nanoparticles transport, based on the same principles of electrokinetic remediation (EKR). This work is a literature survey integrating the experimental work made for the electroremediation of PCB-contaminated soil, coupling electrokinetics with nZVI, starting from the tests with stabilized bimetallic Fe/Pd nanoparticles and including the comparison between the traditional three-compartment EK setup and the more recent two-compartment electrodialytic (ED) setup. The experiments with EK and Fe/Pd nanoparticles were not encouraging for scale-up of the process, with only 20 % PCB removal. The electrodialytic setup showed best removals (>75 % in real contaminated soils) and showed several advantages, such as a higher PCB dechlorination in contaminated soil, in a shorter time, with lower nZVI consumption, a uniform distribution of nZVI in soil, and with the use of half of the voltage gradient when compared with the traditional EK setup.


Electrokinetics EK EKR Electrodialytic remediation EDR nZVI Contaminated soils POP 



This work has been funded by the research grant SFRH/BD/76070/2011, by project PTDC/AGR-AAM/101643/2008 NanoDC under Portuguese National funds through “Fundação para a Ciência e a Tecnologia,” and by FP7-PEOPLE-IRSES-2010-269289-ELECTROACROSS.


  1. Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27(13):2638–2647CrossRefGoogle Scholar
  2. Alder AC, Haggblom MM, Oppenheimer SR, Young LY (1993) Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments. Environ Sci Technol 27:530–538CrossRefGoogle Scholar
  3. ATSDR (2000) Toxicological profile for polychlorinated biphenyls (PCBs). Agency for Toxic Substances and Disease Registry/U.S. Department of Health and Human Services, AtlantaGoogle Scholar
  4. ATSDR (2011) Toxicological profiles. Agency for Toxic Substances and Disease Registry/U.S. Department of Health and Human Services. Accessed 13 Jul 2011Google Scholar
  5. Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013CrossRefGoogle Scholar
  6. Breivik K, Sweetman A, Pacyna JM, Jones KC (2002a) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach 1. Global production and consumption. Sci Total Environ 290:181–198CrossRefGoogle Scholar
  7. Breivik K, Sweetman A, Pacyna JM, Jones KC (2002b) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach 2. Emissions Total Sci Environ 290:199–224CrossRefGoogle Scholar
  8. Breivik K, Sweetman A, Pacyna JM, Jones KC (2007) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach 3. An update. Sci Total Environ 377:296–307CrossRefGoogle Scholar
  9. CDC (2009) Fourth National Report on Human Exposure to Environmental Chemicals. Department of Health and Human Services/Centers for Disease Control and Prevention, AtlantaGoogle Scholar
  10. Chen X, Yao X, Yu C, Su X, Shen C, Chen C, Huang R, Xu X (2014) Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles. Environ Sci Pollut Res 27:1–10. doi:10.1007/s11356-013-2089-8Google Scholar
  11. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125. doi:10.1016/j.jhazmat.2011.11.073CrossRefGoogle Scholar
  12. Diamond ML, Melymuk L, Csiszar SA, Robson M (2010) Estimation of PCB stocks, emissions, and urban fate: will our policies reduce concentrations and exposure? Environ Sci Technol 44:2777–2783CrossRefGoogle Scholar
  13. Diaz-Ferrero J, Rodriguez-Larena MC, Comellas L, Jimhnez B (1997) Bioanalytical methods applied to endocrine disrupting polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. A review trends. Anal Chem 16(10):563–573Google Scholar
  14. Donaldson SG, Oostdam JV, Tikhonov C, Feeley M, Armstrong B, Ayotte P, Boucher O, Bowers W, Chan L, Dallaire F, Dallaire R, Dewailly É, Edwards J, Egeland GM, Fontaine J, Furgal C, Leech T, Loring E, Muckle G, Nancarrow T, Pereg D, Plusquellec P, Potyrala M, Receveur O, Sheare RG (2010) Environmental contaminants and human health in the Canadian Arctic. Sci Total Environ 408:5165–5234CrossRefGoogle Scholar
  15. Eisler R (1986) Planar PCB hazards to fish, wildlife, and invertebrates: a synoptic review. Patuxent Wildlife Research Center. U.S., Fish and Wildlife Service, LaurelGoogle Scholar
  16. Eisler R, Belisle AA (1996) Planar PCB hazards to fish, wildlife, and invertebrates: a synoptic review. Patuxent Wildlife Research Center. U.S., National Biological Service, LaurelGoogle Scholar
  17. Erickson MD, Kaley RG (2011) Applications of polychlorinated biphenyls. Environ Sci Pollut Res 18:135–151CrossRefGoogle Scholar
  18. Fan G, Cang L, Qin W, Zhou C, Gomes HI, Zhou D (2013) Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nano Pd/Fe for the remediation of PCBs contaminated soils. Sep Purif Technol 114:64–72, CrossRefGoogle Scholar
  19. Fan G, Cang L, Fang G, Zhou D (2014) Surfactant and oxidant enhanced electrokinetic remediation of a PCBs polluted soil. Sep Purif Technol 123:106–113, CrossRefGoogle Scholar
  20. Faroon OM, Keith LS, Smith- C, Simon, Rosa CTD (2003) Polychlorinated biphenyls: human health aspects. In: World Health Organization. Report published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals, Geneva, SwitzerlandGoogle Scholar
  21. Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J Biosci Bioeng 105(5):433–449CrossRefGoogle Scholar
  22. Gomes HI (2014) Coupling electrokinetics and iron nanoparticles for the remediation of contaminated soils. Ph.D. Dissertation, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, PortugalGoogle Scholar
  23. Gomes H, Dias-Ferreira C, Ribeiro AB, Loch G, Ottosen LM (2011) A new approach to soil remediation: coupling nanotechnology with electrically induced particle transport (Electrokinetics). In: Castro F, Vilarinho C, Carvalho J (eds) Book of proceedings of the 1st international conference WASTES: solutions, Treatments and opportunities. CVR—Centro para a valorização de Resíduos, Guimarães, Portugal, pp 732–737. ISBN 978-989-97429-1-8Google Scholar
  24. Gomes HI, Dias-Ferreira C, Ribeiro AB (2012) Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere 87(10):1077–1090. doi:10.1016/j.chemosphere.2012.02.037CrossRefGoogle Scholar
  25. Gomes HI, Dias-Ferreira C, Ribeiro AB (2013a) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445–446:237–260, CrossRefGoogle Scholar
  26. Gomes HI, Dias-Ferreira C, Ribeiro AB, Pamukcu S (2013b) Enhanced transport and transformation of zerovalent nanoiron in clay using direct electric current. Water Air Soil Poll 224(12):1–12. doi: 10.1007/s11270-013-1710-2 CrossRefGoogle Scholar
  27. Gomes HI, Dias-Ferreira C, Ottosen LM, Ribeiro AB (2014a) Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants. J Colloid Interf Sci 433:189–195, CrossRefGoogle Scholar
  28. Gomes HI, Dias-Ferreira C, Ribeiro AB, Pamukcu S (2014b) Influence of electrolyte and voltage on the direct current enhanced transport of iron nanoparticles in clay. Chemosphere 99:171–179, CrossRefGoogle Scholar
  29. Gomes HI, Dias-Ferreira C, Ottosen LM, Ribeiro AB (2015) Treatment of a suspension of PCB contaminated soil using iron nanoparticles and electric current. J Environ Manage 151:550–555, CrossRefGoogle Scholar
  30. Hansen HK, Rojo A (2007) Testing pulsed electric fields in electroremediation of copper mine tailings. Electrochim Acta 52(10):3399–3405, CrossRefGoogle Scholar
  31. Hansen HK, Rojo A, Ottosen LM (2005) Electrodialytic remediation of copper mine tailings. J Hazard Mater 117(2–3):179–183, CrossRefGoogle Scholar
  32. He F, Zhao D, Paul C (2010) Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res 44:2360–2370CrossRefGoogle Scholar
  33. Holoubek I, Dušek L, Sáňka M, Hofman J, Čupr P, Jarkovský J, Zbíral J, Klánová J (2009) Soil burdens of persistent organic pollutants—their levels, fate and risk. Part I variation of concentration ranges according to different soil uses and locations. Environ Pollut 157(12):3207–3217, CrossRefGoogle Scholar
  34. Hu D, Hornbuckle KC (2010) Inadvertent polychlorinated biphenyls in commercial paint pigments. Environ Sci Technol 44(8):2822–2827. doi:10.1021/es902413kCrossRefGoogle Scholar
  35. Istrate I, Cocarta D, Neamtu S, Cirlioru T (2013) The treatment of PCB polluted soil—the approach based on the application of electrochemical treatment. Water Air Soil Pollut 224(4):1–14. doi:10.1007/s11270-013-1516-2CrossRefGoogle Scholar
  36. Jensen SF (2009) PCB in Soil. The contamination of PCB in selected locations around Roskilde and Copenhagen. Roskilde University, DenmarkGoogle Scholar
  37. Jensen PE, Ottosen LM, Ferreira C (2007) Electrodialytic remediation of soil fines (<63 μm) in suspension—influence of current strength and L/S. Electrochim Acta 52(10):3412–3419, CrossRefGoogle Scholar
  38. Jensen PE, Ferreira CMD, Hansen HK, Rype J-U, Ottosen LM, Villumsen A (2010) Electroremediation of air pollution control residues in a continuous reactor. J Appl Electrochem 40:1173–1181. doi: 10.1007/s10800-010-0090-1 CrossRefGoogle Scholar
  39. Jones EH, Reynolds DA, Wood AL, Thomas DG (2010) Use of electrophoresis for transporting nano-iron in porous media. Ground Water 49(2):172–183. doi:10.1111/j.1745-6584.2010.00718.xCrossRefGoogle Scholar
  40. Kas J, Burkhard J, Demnerová K, Kost’ál J, Macek T, Macková M, Pazlarová J (1997) Perspectives in biodegradation of alkanes and PCBs. Pure Appl Chem 69(11):2357–2369CrossRefGoogle Scholar
  41. Kirkelund GM, Ottosen LM, Villumsen A (2009) Electrodialytic remediation of harbour sediment in suspension—evaluation of effects induced by changes in stirring velocity and current density on heavy metal removal and pH. J Hazard Mater 169(1–3):685–690, CrossRefGoogle Scholar
  42. Koblizkova M, Ruzicková P, Cupr P, Komprda J, Holoubek I, Klánová J (2009) Soil burdens of persistent organic pollutants: their levels, fate and risks. Part IV, quantification of volatilization fluxes of organochlorine pesticides and polychlorinated biphenyls from contaminated soil surfaces. Environ Sci Technol 43:3588–3595CrossRefGoogle Scholar
  43. Kocur CM, Chowdhury AI, Sakulchaicharoen N, Boparai HK, Weber KP, Sharma P, Krol MM, Austrins LM, Peace C, Sleep BE, O’Carroll DM (2014) Characterization of nZVI mobility in a field scale test. Environ Sci Technol 48(5):2862–2869. doi:10.1021/es4044209CrossRefGoogle Scholar
  44. Kohler M, Tremp J, Zennegg M, Seiler C, Minder-Kohler S, Beck M, Lienemann P, Wegmann L, Schmid P (2005) Joint sealants: an overlooked diffuse source of polychlorinated biphenyls in buildings. Environ Sci Technol 39:1967–1973CrossRefGoogle Scholar
  45. Lageman R, Pool W, Seffinga GA (1989) Electro-reclamation. Chem Ind 18:585–590Google Scholar
  46. Laumann S, Micić V, Lowry GV, Hofmann T (2013) Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environ Pollut 179:53–60, CrossRefGoogle Scholar
  47. Lee H-H, Yang J-W (2000) A new method to control electrolytes pH by circulation system in electrokinetic soil remediation. J Hazard Mater B 77:227–240CrossRefGoogle Scholar
  48. Li Y, Liang F, Zhu Y, Wang F (2013) Phytoremediation of a PCB-contaminated soil by alfalfa and tall fescue single and mixed plants cultivation. J Soil Sediment 13(5):925–931. doi:10.1007/s11368-012-0618-6CrossRefGoogle Scholar
  49. Lima AT, Ottosen LM, Heister K, Loch JPG (2012) Assessing PAH removal from clayey soil by means of electro-osmosis and electrodialysis. Sci Total Environ 435–436:1–6, CrossRefGoogle Scholar
  50. Lowry G, Johnson K (2004) Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ Sci Technol 38:5208–5216CrossRefGoogle Scholar
  51. Maervoet J, Covaci A, Schepens P, Sandau CD, Letcher RJ (2003) A reassessment of the nomenclature of polychlorinated biphenyl (PCB) metabolites. Environ Health Perspect 112(3):291–294CrossRefGoogle Scholar
  52. Meijer SN, Ockenden WA, Sweetman A, Breivik K, Grimalt JO, Jones KC (2003) Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environ Sci Technol 37:667–672CrossRefGoogle Scholar
  53. Mikszewski A (2004) Emerging technologies for the in situ remediation of PCB-contaminated soils and sediments: bioremediation and nanoscale zero-valent iron. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. Office of Superfund Remediation and Technology Innovation Program, Washington, DCGoogle Scholar
  54. Nizzetto L, Macleod M, Borgå K, Cabrerizo A, Dachs J, Guardo AD, Ghirardello D, Hansen KM, Jarvis A, Lindroth A, Ludwig B, Monteith D, Perlinger JA, Scheringer M, Schwendenmann L, Semple KT, Wick LY, Zhang G, Jones KC (2010) Past, present, and future controls on levels of persistent organic pollutants in the global environment. Environ Sci Technol 44(17):6526–6531. doi:10.1021/es100178fCrossRefGoogle Scholar
  55. Nystroem GM, Pedersen AJ, Ottosen LM, Villumsen A (2006) The use of desorbing agents in electrodialytic remediation of harbour sediment. Sci Total Environ 357(1–3):25–37CrossRefGoogle Scholar
  56. Ockenden WA, Breivik K, Meijer SN, Steinnes E, Sweetman AJ, Jones KC (2003) The global re-cycling of persistent organic pollutants is strongly retarded by soils. Environ Pollut 121(1):75–80, CrossRefGoogle Scholar
  57. Ottosen LM, Hansen HK, Laursen S, Villumsen A (1997) Electrodialytic remediation of soil polluted with copper from wood preservation industry. Environ Sci Technol 31(6):1711–1715CrossRefGoogle Scholar
  58. Ottosen LM, Pedersen AJ, Ribeiro AB, Hansen HK (2005) Case study on the strategy and application of enhancement solutions to improve remediation of soils contaminated with Cu, Pb and Zn by means of electrodialysis. Eng Geol 77(3–4):317–329, CrossRefGoogle Scholar
  59. Ottosen LM, Lima AT, Pedersen AJ, Ribeiro AB (2006) Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water. J Chem Technol Biotechnol 81(4):553–559. doi:10.1002/jctb.1424CrossRefGoogle Scholar
  60. Ottosen LM, Pedersen AJ, Hansen HK, Ribeiro AB (2007) Screening the possibility for removing cadmium and other heavy metals from wastewater sludge and bio-ashes by an electrodialytic method. Electrochim Acta 52(10):3420–3426, CrossRefGoogle Scholar
  61. Ottosen LM, Jensen PE, Hansen HK, Ribeiro A, Allard B (2009) Electrodialytic remediation of soil slurry–removal of Cu, Cr, and As. Sep Sci Technol 44(10):2245–2268. doi:10.1080/01496390902979651CrossRefGoogle Scholar
  62. Ottosen L, Jensen P, Kirkelund G, Hansen H (2013a) Electrodialytic remediation of different heavy metal-polluted soils in suspension. Water Air Soil Pollut 224(12):1–10. doi:10.1007/s11270-013-1707-xCrossRefGoogle Scholar
  63. Ottosen LM, Jensen PE, Kirkelund GM, Ebbers B (2013b) Electrodialytic separation of heavy metals from particulate material. Patent application EPC 13183278:4–1352Google Scholar
  64. Pamukcu S, Wittle JK (1992) Electrokinetic removal of selected heavy metals from soil. Environ Progress 11:241–250CrossRefGoogle Scholar
  65. Pamukcu S, Hannum L, Wittle JK (2008) Delivery and activation of nano-iron by DC electric field. J Environ Sci Health A 43(8):934–944CrossRefGoogle Scholar
  66. Pazos M, Kirkelund GM, Ottosen LM (2010) Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion. J Hazard Mater 176(1):1073–1078CrossRefGoogle Scholar
  67. Priha E, Hellman S, Sorvari J (2005) PCB contamination from polysulphide sealants in residential areas—exposure and risk assessment. Chemosphere 59(4):537–543. doi:10.1016/j.chemosphere.2005.01.010CrossRefGoogle Scholar
  68. Probstein RF, Hicks RE (1993) Removal of contaminants from soil by electric fields. Science 260:498–530CrossRefGoogle Scholar
  69. Ribeiro AB, Mateus EP, Ottosen LM, Bech-Nielsen G (2000) Electrodialytic removal of Cu, Cr and As from chromated copper arsenate-treated timber waste. Environ Sci Technol 34:784–788CrossRefGoogle Scholar
  70. Ritter L, Solomon KR, Forget J, Stemeroff M, O’Leary C (1997) Persistent organic pollutants. An Assessment Report on: DDT-Aldrin-Dieldrin-Endrin-Chlordane, Heptachlor-Hexachlorobenzene, Mirex-Toxaphene, Polychlorinated Biphenyls, Dioxins and Furans. The International Programme on Chemical Safety (IPCS) within the framework of the Inter-Organization Programme for the Sound Management of Chemicals (IOMC)Google Scholar
  71. Rodenburg LA, Guo J, Du S, Cavallo GJ (2010) Evidence for unique and ubiquitous environmental sources of 3,3′-Dichlorobiphenyl (PCB 11). Environ Sci Technol 44(8):2816–2821. doi:10.1021/es901155hCrossRefGoogle Scholar
  72. Rojo A, Hansen HK, Cubillos M (2012) Electrokinetic remediation using pulsed sinusoidal electric field. Electrochim Acta 86:124–129, CrossRefGoogle Scholar
  73. Rosalinda G, Jordi D, Luca N, Rainer L, Kevin CJ (2013) Atmospheric transport, cycling and dynamics of polychlorinated biphenyls (PCBs) from source regions to remote oceanic areas. In: Occurrence, fate and impact of atmospheric pollutants on environmental and human health, vol 1149. ACS Symposium Series, vol 1149. American Chemical Society, pp 3–18. doi: 10.1021/bk-2013-1149.ch001
  74. Saichek RE, Reddy KR (2003a) Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere 21:273–287CrossRefGoogle Scholar
  75. Saichek RE, Reddy KR (2003b) Effects of system variables on surfactant enhanced electrokinetic removal of polycyclic aromatic hydrocarbons from clayey soils. Environ Technol 24(4):503–515CrossRefGoogle Scholar
  76. Schmidt C (2010) How PCBs are like grasshoppers. Environ Sci Technol 44(8):2752CrossRefGoogle Scholar
  77. Sun TR (2013) Effect of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation. Ph.D. Dissertation. Technical University of Denmark, DenmarkGoogle Scholar
  78. Sun TR, Ottosen LM (2012) Effects of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation. Electrochim Acta 86:28–35, CrossRefGoogle Scholar
  79. Sun TR, Ottosen LM, Jensen PE, Kirkelund GM (2012) Electrodialytic remediation of suspended soil—comparison of two different soil fractions. J Hazard Mater 203–204:229–235, CrossRefGoogle Scholar
  80. TBS-SCT (2014) Contaminants & Media. Accessed 27 Feb 2014
  81. UN (2001) Stockholm convention on persistent organic pollutants. 2014
  82. UNEP (2002) PCB transformers and capacitors from management to reclassification and disposal. UNEP Chemicals, United Nations Environmental Programme, Geneva, SwitzerlandGoogle Scholar
  83. USEPA (2014) Search superfund site information. Accessed 27 Feb 2014
  84. Valentín L, Nousiainen A, Mikkonen A (2013) Introduction to organic contaminants in soil: concepts and risks. In: Vicent T, Caminal G, Eljarrat E, Barceló D (eds) Emerging organic contaminants in sludges: analysis, fate and biological treatment. Springer, Berlin. doi:10.1007/698_2012_208Google Scholar
  85. Marc van Liedekerke GP, Sabine Rabl-Berger, Mark Kibblewhite, Geertrui Louwagie (2014) Progress in the management of Contaminated Sites in Europe. Report EUR 26376 EN. Institute for Environment and Sustainability. Joint Research Center. European Commission, Luxembourg.
  86. Varanasi P, Fullana A, Sidhu S (2007) Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 66:1031–1038CrossRefGoogle Scholar
  87. Viisimaa M, Karpenko O, Novikov V, Trapido M, Goi A (2013) Influence of biosurfactant on combined chemical-biological treatment of PCB-contaminated soil. Chem Eng J 220:352–359, CrossRefGoogle Scholar
  88. Virkutyte J, Sillanpaa M, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289:97–121CrossRefGoogle Scholar
  89. Wang C-B, Zhang W (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156CrossRefGoogle Scholar
  90. Wang Y, Zhou D, Wang Y, Wang L, Cang L (2012) Automatic pH control system enhances the dechlorination of 2,4,4′-trichlorobiphenyl and extracted PCBs from contaminated soil by nanoscale Fe0 and Pd/Fe0. Environ Sci Pollut Res 19(2):448–457. doi:10.1007/s11356-011-0587-0CrossRefGoogle Scholar
  91. Xing GH, Chan JKY, Leung AOW, Wu SC, Wong MH (2009) Environmental impact and human exposure to PCBs in Guiyu, an electronic waste recycling site in China. Environ Int 35:76–82CrossRefGoogle Scholar
  92. Yak HK, Wenclawiak BW, Cheng IF, Doyle JG, Wai CM (1999) Reductive dechlorination of polychlorinated biphenyls by zerovalent iron in subcritical water. Environ Sci Technol 33(8):1307–1310CrossRefGoogle Scholar
  93. Yan W, Lien H-L, Koel BE, Zhang W (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Proc Imp 15:63–77CrossRefGoogle Scholar
  94. Yang GCC, Tu H-C, Hung CH (2007) Stability of nanoiron slurries and their transport in the subsurface environment. Sep Purif Technol 58:166–172CrossRefGoogle Scholar
  95. Yukselen-Aksoy Y, Reddy KR (2012) Effect of soil composition on electrokinetically enhanced persulfate oxidation of polychlorobiphenyls. Electrochim Acta 86:164–169. doi:10.1016/j.electacta.2012.03.049CrossRefGoogle Scholar
  96. Zhang W, Elliott DW (2006) Applications of iron nanoparticles for groundwater remediation. Remediation J 16(2):7–21CrossRefGoogle Scholar
  97. Zhou Q, Lin H (2013) Influence of surfactants on degradation of 1-(2-Chlorobenzoyl)-3-(4-chlorophenyl) urea by nanoscale zerovalent iron. Clean 41(2):128–133. doi:10.1002/clen.201100650Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Helena I. Gomes
    • 1
    • 2
    • 3
  • Guangping Fan
    • 4
  • Lisbeth M. Ottosen
    • 3
  • Celia Dias-Ferreira
    • 2
  • Alexandra B. Ribeiro
    • 1
  1. 1.CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.CERNAS—Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de Coimbra, Instituto Politecnico de Coimbra, BencantaCoimbraPortugal
  3. 3.Department of Civil EngineeringTechnical University of Denmark, BrovejKongens LyngbyDenmark
  4. 4.Key Laboratory of Soil Environment and Pollution RemediationInstitute of Soil Science, Chinese Academy of Sciences (ISSCAS)NanjingChina

Personalised recommendations