Electrokinetics and Zero Valent Iron Nanoparticles: Experimental and Modeling of the Transport in Different Porous Media

  • Helena I. GomesEmail author
  • José M. Rodríguez-Maroto
  • Alexandra B. Ribeiro
  • Sibel Pamukcu
  • Celia Dias-Ferreira


In this chapter are presented both the experimental results of nZVI transport under electric fields, on mixtures of kaolin and glass beads to represent different porous media, and a generalized physicochemical and numerical model of this transport.

In the experiments, a low-level direct current was used to enhance the transport of poly(acrylic acid) sodium salt (PAA)-coated nZVI in a modified electrophoretic cell. The cell was equipped with internal auxiliary electrodes and a silver chloride reference electrode. The results showed that there were higher concentrations of iron across the test bed when the direct current was applied.

The model consists in the Nernst–Planck coupled system of equations, which accounts for the mass balance equation of ionic species in a fluid medium when diffusion and electromigration are considered in the ions transport process. In the case of the nZVI (with a negative charge), diffusion, and electrophoretic terms were taken into account. In all the cases, the electroosmotic flow was included in the equation. The use of electrical current to transport the nanoparticles prevents or hinders the nZVI particle aggregation, increasing their mobility. However, opposing directions of electrophoretic transport of negatively charged particles and the electroosmotic advection still produces low nZVI transport. To enhance the transport in soils with high electroosmotic conductivities, we suggest neutrally charged and stabilized nanoparticles that could be transported mainly by electroosmotic advection.


Electrokinetics nZVI Porous media Model Nernst–Planck equations Electroosmosis 



This work has been funded by the research grant SFRH/BD/76070/2011, by project PTDC/AGR-AAM/101643/2008 NanoDC under Portuguese National funds through “Fundação para a Ciência e a Tecnologia” and by FP7-PEOPLE-IRSES-2010-269289-ELECTROACROSS. The Department of Civil and Environmental Engineering at Lehigh University is acknowledged for the funding of equipment development, testing, and analysis of the nZVI transport experiments.


  1. Chang R, Overby J (2011) General chemistry—the essential concepts. McGraw-Hill, New YorkGoogle Scholar
  2. Chen S-S, Huang Y-C, Kuo T-Y (2010) The remediation of perchloroethylene contaminated groundwater by nanoscale iron reactive barrier integrated with surfactant and electrokinetics. Ground Water Monit Rem 30(4):90–98CrossRefGoogle Scholar
  3. Chowdhury AIA, O’Carroll DM, Xu Y, Sleep BE (2012) Electrophoresis enhanced transport of nano-scale zero valent iron. Adv Water Resour 40:71–82. doi:10.1016/j.advwatres.2012.01.014CrossRefGoogle Scholar
  4. Elliott DW, Zhang W (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926CrossRefGoogle Scholar
  5. Fan G, Cang L, Qin W, Zhou C, Gomes HI, Zhou D (2013) Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nano Pd/Fe for the remediation of PCBs contaminated soils. Sep Purif Technol 114:64–72. doi:10.1016/j.seppur.2013.04.030CrossRefGoogle Scholar
  6. Gomes HI (2014) Coupling electrokinetics and iron nanoparticles for the remediation of contaminated soils. Ph.D. Dissertation. Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, PortugalGoogle Scholar
  7. Gomes HI, Dias-Ferreira C, Ribeiro AB (2012a) Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere 87(10):1077–1090. doi:10.1016/j.chemosphere.2012.02.037CrossRefGoogle Scholar
  8. Gomes HI, Dias-Ferreira C, Ribeiro AB, Pamukcu S (2012b) Electrokinetic enhanced transport of zero valent iron nanoparticles for chromium (VI) reduction in soils. Chem Eng Trans 28:139–144. ISBN:978-188-95608-95619-95608, ISSN:91974-99791, doi:95610.93303/CET1228024Google Scholar
  9. Gomes HI, Dias-Ferreira C, Ribeiro AB, Pamukcu S (2013) Enhanced transport and transformation of zerovalent nanoiron in clay using direct electric current. Water Air Soil Pollut 224(12):1–12. doi:10.1007/s11270-013-1710-2CrossRefGoogle Scholar
  10. Gomes HI, Dias-Ferreira C, Ottosen LM, Ribeiro AB (2014a) Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants. J Colloid Interface Sci 433:189–195. doi:10.1016/j.jcis.2014.07.022CrossRefGoogle Scholar
  11. Gomes HI, Dias-Ferreira C, Ribeiro AB, Pamukcu S (2014b) Influence of electrolyte and voltage on the direct current enhanced transport of iron nanoparticles in clay. Chemosphere 99:171–179. doi:10.1016/j.chemosphere.2013.10.065CrossRefGoogle Scholar
  12. Gomes HI, Fan G, Mateus EP, Dias-Ferreira C, Ribeiro AB (2014c) Assessment of combined electro–nanoremediation of molinate contaminated soil. Sci Total Environ 493:178–184. doi:10.1016/j.scitotenv.2014.05.112CrossRefGoogle Scholar
  13. Gomes HI, Rodríguez-Maroto JM, Ribeiro AB, Pamukcu S, Dias-Ferreira C (2015) Numerical prediction of diffusion and electric field-induced iron nanoparticle transport. Electrochim Acta (in press). doi:10.1016/j.electacta.2014.11.157Google Scholar
  14. He F, Zhao D, Liu J, Roberts CB (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34CrossRefGoogle Scholar
  15. Henn KW, Waddill DW (2006) Utilization of nanoscale zero-valent iron for source remediation—a case study. Remediation 16(2):57–77CrossRefGoogle Scholar
  16. Hydutsky BW, Mack EJ, Beckerman BB, Skluzacek JM, Mallouk TE (2007) Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol 41(18):6418–6424. doi:10.1021/es0704075CrossRefGoogle Scholar
  17. Jiemvarangkul P, Zhang WX, Lien HL (2011) Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chem Eng J 170(2–3):482–491. doi:10.1016/j.cej.2011.02.065CrossRefGoogle Scholar
  18. Jones EH, Reynolds DA, Wood AL, Thomas DG (2010) Use of electrophoresis for transporting nano-iron in porous media. Ground Water 49(2):172–183. doi:10.1111/j.1745-6584.2010.00718.xCrossRefGoogle Scholar
  19. Kanel S, Nepal D, Manning B, Choi H (2007) Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation. J Nanoparticle Res 9(5):725–735. doi:10.1007/s11051-007-9225-7CrossRefGoogle Scholar
  20. Kanel SR, Goswami RR, Clement TP, Barnett MO, Zhao D (2008) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 42:896–900CrossRefGoogle Scholar
  21. Kim H-J, Phenrat T, Tilton RD, Lowry GV (2012) Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J Colloid Interface Sci 370(1):1–10. doi:10.1016/j.jcis.2011.12.059CrossRefGoogle Scholar
  22. Kocur CM, Chowdhury AI, Sakulchaicharoen N, Boparai HK, Weber KP, Sharma P, Krol MM, Austrins LM, Peace C, Sleep BE, O’Carroll DM (2014) Characterization of nZVI mobility in a field scale test. Environ Sci Technol 48(5):2862–2869. doi:10.1021/es4044209CrossRefGoogle Scholar
  23. Lin Y-H, Tseng H-H, Wey M-Y, Lin M-D (2010) Characteristics of two types of stabilized nano zero-valent iron and transport in porous media. Sci Total Environ 408(10):2260–2267. doi:10.1016/j.scitotenv.2010.01.039CrossRefGoogle Scholar
  24. Mitchell JK (1993) Fundamentals of soil behavior, 2nd edn. Wiley, New YorkGoogle Scholar
  25. Mueller NC, Jr B, Bruns J, Černík M, Rissing P, Rickerby D, Nowack B (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558. doi:10.1007/s11356-011-0576-3CrossRefGoogle Scholar
  26. Newman J (1991) Electrochemical Systems. Prentice Hall, Englewood CliffsGoogle Scholar
  27. Noubactep C, Caré S, Crane R (2012) Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut 22(3):1363–1382. doi:10.1007/s11270-011-0951-1CrossRefGoogle Scholar
  28. Pamukcu S, Hannum L, Wittle JK (2008) Delivery and activation of nano-iron by DC electric field. J Environ Sci Health A 43(8):934–944CrossRefGoogle Scholar
  29. Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290CrossRefGoogle Scholar
  30. Phenrat T, Kim H-J, Fagerlund F, Illangasekare T, Tilton RD, Lowry GV (2009a) Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe(0) nanoparticles in sand columns. Environ Sci Technol 43:5079–5085CrossRefGoogle Scholar
  31. Phenrat T, Liu Y, Tilton RD, Lowry GV (2009b) Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms. Environ Sci Technol 43:1507–1514CrossRefGoogle Scholar
  32. Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon W-S, Gavaskar A, Holdsworth T (2005) Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol 39(5):1309–1318. doi:10.1021/es0490018CrossRefGoogle Scholar
  33. Rao PSC, Jawitz JW, Enfield CG, Falta RW, Annable MD, Wood AL (2001) Technology integration for contaminated site remediation: clean-up goals and performance criteria. In: Groundwater quality: natural and enhanced restoration of groundwater pollutions. Proceedings of the groundwater quality 2001 conference, Sheffield, IAHS publications no. 275, pp 571–578Google Scholar
  34. Raychoudhury T, Naja G, Ghoshal S (2010) Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media. J Contam Hydrol 118(3–4):143–151. doi:10.1016/j.jconhyd.2010.09.005CrossRefGoogle Scholar
  35. Reddy KR, Karri MR (2008) Electrokinetic delivery of nanoiron amended with surfactant and cosolvent in contaminated soil. In: Proceedings of the international conference on waste engineering and management, Hong Kong, May 2008Google Scholar
  36. Reddy KR, Darko-Kagy K, Cameselle C (2011) Electrokinetic-enhanced transport of lactate-modified nanoscale iron particles for degradation of dinitrotoluene in clayey soils. Sep Purif Technol 79(2):230–237CrossRefGoogle Scholar
  37. Rejeski D, Kuiken T, Polischuk P, Pauwels E (2014) Nanoremediation map. Project on emerging nanotechnologies. Accessed 5 Mar 2014
  38. Rosales E, Loch JPG, Dias-Ferreira C (2014) Electro-osmotic transport of nano zero-valent iron in Boom Clay. Electrochim Acta 127:27–33. doi:10.1016/j.electacta.2014.01.164CrossRefGoogle Scholar
  39. Saleh N, Kim H-J, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42(9):3349–3355. doi:10.1021/es071936bCrossRefGoogle Scholar
  40. Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193CrossRefGoogle Scholar
  41. Su C, Puls RW, Krug TA, Watling MT, O’Hara SK, Quinn JW, Ruiz NE (2012) A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Res 46(16):5071–5084. doi:10.1016/j.watres.2012.06.051CrossRefGoogle Scholar
  42. Tosco T, Petrangeli Papini M, Cruz Viggi C, Sethi R (2014) Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod 77:10–21. doi:10.1016/j.jclepro.2013.12.026CrossRefGoogle Scholar
  43. USEPA (2011a) Permeable reactive barriers, permeable treatment zones, and application of zero-valent iron: overview, technology innovation and field services division. USEPA, Washington, DCGoogle Scholar
  44. USEPA (2011b) Fact sheet on selected sites using or testing nanoparticles for remediation. United States Environmental Protection AgencyGoogle Scholar
  45. Wang C-B, Zhang W-x (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156CrossRefGoogle Scholar
  46. Yang GCC, Chang Y-I (2011) Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil. Sep Purif Technol 79:278–284CrossRefGoogle Scholar
  47. Yang GCC, Tu H-C, Hung C-H (2007) Stability of nanoiron slurries and their transport in the subsurface environment. Sep Purif Technol 58:166–172CrossRefGoogle Scholar
  48. Yang GCC, Hung C-H, Tu H-C (2008) Electrokinetically enhanced removal and degradation of nitrate in the subsurface using nanosized Pd/Fe slurry. J Environ Sci Health A 43(8):945–951CrossRefGoogle Scholar
  49. Yuan S, Long H, Xie W, Liao P, Tong M (2012) Electrokinetic transport of CMC-stabilized Pd/Fe nanoparticles for the remediation of PCP-contaminated soil. Geoderma 185–186:18–25. doi:10.1016/j.geoderma.2012.03.028CrossRefGoogle Scholar
  50. Zhang W, Elliott DW (2006) Applications of iron nanoparticles for groundwater remediation. Remediat J 16(2):7–21CrossRefGoogle Scholar
  51. Zhang W, Wang C-B, Lien H-L (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Helena I. Gomes
    • 1
    • 2
    • 3
    Email author
  • José M. Rodríguez-Maroto
    • 4
  • Alexandra B. Ribeiro
    • 1
  • Sibel Pamukcu
    • 5
  • Celia Dias-Ferreira
    • 2
  1. 1.CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.CERNAS—Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de Coimbra, Instituto Politecnico de CoimbraCoimbraPortugal
  3. 3.Department of Civil EngineeringTechnical University of DenmarkLyngbyDenmark
  4. 4.Department of Chemical EngineeringUniversity of MálagaMálagaSpain
  5. 5.Department of Civil and Environmental EngineeringLehigh UniversityBethlehemUSA

Personalised recommendations