Advertisement

Life Cycle Assessment of Soil and Groundwater Remediation: Groundwater Impacts of Electrokinetic Remediation

  • Luís M. Nunes
  • Helena I. Gomes
  • Margarida Ribau Teixeira
  • Celia Dias-Ferreira
  • Alexandra B. Ribeiro

Abstract

The growing concern about the sustainability of soil remediation technologies and operations lead to the development of different support decision methods. Life cycle assessment (LCA) methodologies have well-developed methods for assessing environmental impacts for emissions to air, surface water, and surface soil, but deep soil emissions and emissions to groundwater have received little attention. Regional impact of groundwater extractions has largely not been considered in LCA as well, nor their relation to surface water bodies and groundwater-dependent ecosystems. These aspects are now compulsory in the management of water resources in Europe, under EU Water Framework Directive. Future developments in LCA will necessarily have to include these relations in the characterization of the impacts. Given the strong retardation that many pollutants undertake in the soil, the temporal factor is relevant in the groundwater compartment, as contamination may extend for decades. Moreover, groundwater contamination due to industrial sources, including soil remediation, tends to be spatially concentrated, dispersing from the point of origin depending on hydrogeologic conditions, soil retention capacity, pollutant’s degradation rates, and time. Exposure to contaminated groundwater is frequently assessed by modeling; however, the proposed models require detailed information about soil properties, which is usually not available, nor is it possible to obtain in the scope of a life cycle assessment. Simpler methods are therefore needed. The present article discusses some of these alternatives, in particular applied to soil remediation with electrokinetic methods. The use of in situ electrokinetics for the remediation of fine-grained soils requires contaminants to move from their initial location to an electrode. The migration path can be long and there could be stagnant zones between wells where the rate of migration is slow, both of which can result in an incomplete remediation and to potential impacts on groundwater.

Keywords

Electrokinetic remediation LCA Soil Groundwater Pollutants 

References

  1. Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27(13):2638–2647CrossRefGoogle Scholar
  2. Acar YB, Gale RJ, Alshawabkeh AN, Marks RE, Puppala S, Bricka M, Parker R (1995) Electrokinetic remediation: basics and technology status. J Hazard Mater 40(2):117–137. doi: 10.1016/0304-3894(94)00066-P CrossRefGoogle Scholar
  3. Agarwal S, Cluxton P, Kemper M, Dionysiou DD, Al-Abed SR (2008) Assessment of the functionality of a pilot-scale reactor and its potential for electrochemical degradation of calmagite, a sulfonated azo-dye. Chemosphere 73:837–843CrossRefGoogle Scholar
  4. Alcántara MT, Gómez J, Pazos M, Sanromán MA (2010) Electrokinetic remediation of PAH mixtures from kaolin. J Hazard Mater 179(1-3):1156–1160. doi: 10.1016/j.jhazmat.2010.03.010 CrossRefGoogle Scholar
  5. Alshawabkeh AN (2009) Electrokinetic soil remediation: challenges and opportunities. Sep Sci Technol 44:2171–2187CrossRefGoogle Scholar
  6. Amores MJ, Verones F, Raptis C, Juraske R, Pfister S, Stoessel F, Antón A, Castells F, Hellweg S (2013) Biodiversity impacts from salinity increase in a coastal wetland. Environ Sci Technol 47:6384–6392Google Scholar
  7. Ayres RU (1995) Life cycle analysis: a critique. Resour Conserv Recycl 14:199–223CrossRefGoogle Scholar
  8. Bayer P, Finkel M (2006) Life cycle assessment of active and passive groundwater remediation technologies. J Contam Hydrol 83:171–199. doi: 10.1016/j.jconhyd.2005.11.005 CrossRefGoogle Scholar
  9. Bender A, Volkwein S, Battermann G, Hurtig H-W, Kopffer W, Kohler W (1998) Life cycle assessment method for remedial action techniques: methodology and application. In: Telford, T. (Ed.), Contaminated Soil 98—Sixth International FZK/TNO Conference. Edinburgh, pp 367–376Google Scholar
  10. Borden RC, Bedient PB (1986) Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation: 1: theoretical development. Water Resour Res 22:1973–1982CrossRefGoogle Scholar
  11. Borden RC, Bedient PB, Lee MD, Ward CH, Wislon JT (1986) Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation: 2: field application. Water Resour Res 22:1983–1990CrossRefGoogle Scholar
  12. Busset G, Sangely M, Montrejaud-Vignoles M et al (2012) Life cycle assessment of polychlorinated biphenyl contaminated soil remediation processes. Int J Life Cycle Assess 17:325–336CrossRefGoogle Scholar
  13. Cadotte M, Deschênes L, Samson R (2007) Selection of a remediation scenario for a diesel-contaminated site using LCA. Int J Life Cycle Assess 12:239–251CrossRefGoogle Scholar
  14. Cameselle C, Gouveia S, Akretche DE, Belhadj B (2013) Advances in electrokinetic remediation for the removal of organic contaminants in soils. In: Rashed MN (ed) Soils, organic pollutants—monitoring, risk and treatment. http://www.intechopen.com/books/organic-pollutants-monitoring-risk-and-treatment/advances-in-electrokinetic-remediation-for-the-removal-of-organic-contaminants-in-soils. doi: 10.5772/54334
  15. Cappuyns V, Kessen B (2012) Evaluation of the environmental impact of Brownfield remediation options: comparison of two life cycle assessment-based evaluation tools. Environ Technol 33:2447–2459CrossRefGoogle Scholar
  16. Cappuyns V (2013) LCA based evaluation of site remediation. Opportunities and limitations. Chem Today 31:18–21Google Scholar
  17. Christensen TH, Bhander G, Lindvall H, Larsen AW, Fruergaard T, Damgaard A, Manfredi S, Boldrin A, Riber C, Hauschild M (2007) Experience with the use of LCA-modelling (EASEWASTE) in waste management. Waste Manag Res 25:257–262CrossRefGoogle Scholar
  18. Curran M, De Baan L, De Schryver AM, Van Zelm R, Hellweg S, Koellner T, Sonnemann G, Huijbregts MAJ (2011) Toward meaningful end points of biodiversity in life cycle assessment. Environ Sci Technol 45:70–79CrossRefGoogle Scholar
  19. Diamond ML, Page CA, Campbell M, Mckenna S, Lal R (1999) Life-cycle framework for assessment of site remediation options: case study. Environ Toxicol Chem 18:801–810CrossRefGoogle Scholar
  20. DTU (2012) EASEWASTE user manual. Technical University of Denmark, Kongens LyngbyGoogle Scholar
  21. EC (2010a) ILCD handbook: analysing of existing environmental impact assessment methodologies for use in life cycle assessment. European Commission, BrusselsGoogle Scholar
  22. EC (2010b) ILCD handbook: framework and requirements for LCIA models and indicators first edition. European Commission, BrusselsGoogle Scholar
  23. EC (2011) ILCD handbook: recommendations for life cycle impact assessment in the European context. European Commission, BrusselsGoogle Scholar
  24. EC (2012) The International Reference Life Cycle Data System (ILCD) handbook. European Commission, BrusselsGoogle Scholar
  25. FAO (2000) Assessing soil contamination. A reference manual. FAO Pesticide Disposal Series 8. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  26. Fisher A (2012) Life-cycle assessment of in situ thermal remediation. Autumn 22(4):75–92Google Scholar
  27. Flemström K, Carlson R, Erixon M (2004) Relationships between life cycle assessment and risk assessment—potentials and obstacles, technology. Industrial Environmental Informatics (IMI), Chalmers University of Technology, StockholmGoogle Scholar
  28. Godin J, Ménard J, Hains S (2004) Combined use of life cycle assessment and groundwater transport modeling to support contaminated site management. Hum Ecol Risk Assess An Int J 10:37–41Google Scholar
  29. Gomes HI, Dias-Ferreira C, Ribeiro AB (2012) Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere 87(10):1077–1090. doi: 10.1016/j.chemosphere.2012.02.037 CrossRefGoogle Scholar
  30. Gustafson DI (1989) Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environ Toxicol Chem 8:339–357CrossRefGoogle Scholar
  31. Herrada RA, Perez-Corona M, Shrestha RA, Pamukcu S, Bustos E (2014) Electrokinetic remediation of polluted soil using nano-materials: nano-iron case In: Peralta-Hernández JM, Rodrigo-Rodrigo MA, Martínez-Huitle CA (eds) Evaluation of electrochemical reactors as a new way to environmental protection. Research Signpost, Trivandrum, pp 41–57Google Scholar
  32. Heijungs R, de Koning A, Ligthart T, Korenromp R (2004) Improvement of LCA characterization factors and LCA practice for metals, Cycle. TNO Environment, Energy and Process Innovation, ApeldoornGoogle Scholar
  33. Higgins M, Olson T (2009) Life cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation. Environ Sci Technol 43:9432–9438CrossRefGoogle Scholar
  34. Ho SV, Athmer C, Sheridan PW, Hughes BM, Orth R, McKenzie D, Brodsky PH, Shapiro A, Sivavec TM, Salvo J, Schultz D, Landis R, Griffith R, Shoemaker S (1999a) The Lasagna technology for in situ soil remediation. 2. Large field test. Environ Sci Technol 33:1092–1099CrossRefGoogle Scholar
  35. Ho SV, Athmer C, Sheridan PW, Hughes BM, Orth R, McKenzie D, Brodsky PH, Shapiro A, Thornton R, Salvo J, Schultz D, Landis R, Griffith R, Shoemaker S (1999b) The Lasagna technology for in situ soil remediation. 1. Small field test. Environ Sci Technol 33:1086–1091CrossRefGoogle Scholar
  36. Ho SV, Athmer CJ, Sheridan PW, Shapiro AP (1997) Scale-up aspects of the Lasagna process for in situ soil decontamination. J Hazard Mater 55:39–60CrossRefGoogle Scholar
  37. Ho SV, Sheridan PW, Athmer CJ, Heitkamp MA, Brackin JM, Weber D, Brodsky PH (1995) Integrated in situ soil remediation technology: the Lasagna process. Environ Sci Technol 29:2528–2534CrossRefGoogle Scholar
  38. Hu X, Zhu J, Ding Q (2011) Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: incineration and base catalyzed decomposition. J Hazard Mater 191:258–268CrossRefGoogle Scholar
  39. INAG (2009) Estabelecimento de limiares nas águas subterrâneas. Instituto Nacional da Água, Ministério do Ambiente, LisboaGoogle Scholar
  40. INAG (2011) Estabelecimento de limiares para hidrocarbonetos nas águas subterrâneas. Massa de água de Sines. Instituto Nacional da Água, Ministério do Ambiente, LisboaGoogle Scholar
  41. ISO (2006) ISO 14044—Environmental management—life cycle assessment—requirements and guidelines. International Organization for Standardization, GenevaGoogle Scholar
  42. Jury WA, Focht DD, Farmer WJ (1987) Evaluation of pesticide groundwater pollution potential from standard indices of soil-chemical adsorption and biodegradation. J Environ Qual 16:422–428CrossRefGoogle Scholar
  43. Kim B-K, Baek K, Ko S-H, Yang J-W (2011) Research and field experiences on electrokinetic remediation in South Korea. Sep Purif Technol 79(2):116–123. doi: 10.1016/j.seppur.2011.03.002 CrossRefGoogle Scholar
  44. Kim B-K, Park G-Y, Jeon E-K, Jung J-M, Jung H-B, Ko S-H, Baek K (2013a) Field application of in situ electrokinetic remediation for As-, Cu-, and Pb-contaminated paddy soil. Water Air Soil Pollut 224(9):1–10Google Scholar
  45. Kim D-H, Yoo J-C, Hwang B-R, Yang J-S, Baek K (2014) Environmental assessment on electrokinetic remediation of multimetal-contaminated site: a case study. Environ Sci Pollut Res 21(10):6751–6758. doi: 10.1007/s11356-014-2597-1 CrossRefGoogle Scholar
  46. Kim W-S, Jeon E-K, Jung J-M et al (2013b) Field application of electrokinetic remediation for multi-metal contaminated paddy soil using two-dimensional electrode configuration. Environ Sci Pollut Res 21:1–10. doi: 10.1007/s11356-013-2424-0 Google Scholar
  47. Kim W-S, Park G-Y, Kim D-H, Jung H-B, Ko S-H, Baek K (2012) In situ field scale electrokinetic remediation of multi-metals contaminated paddy soil: influence of electrode configuration. Electrochim Acta 86:89–95. doi: 10.1016/j.electacta.2012.02.078 CrossRefGoogle Scholar
  48. Kirkeby JT, Birgisdottir H, Hansen TL, Christensen TH, Bhander GS (2006) Environmental assessment of solid waste systems and technologies: EASEWASTE. Waste Manag Res 24:3–15CrossRefGoogle Scholar
  49. Koussis AD, Pesmajoglou S, Syriopoulou D (2003) Modelling biodegradation of hydrocarbons in aquifers: when is the use of the instantaneous reaction approximation justified? J Contam Hydrol 60:287–305CrossRefGoogle Scholar
  50. Lageman R, Clarke RL, Pool W (2005) Electro-reclamation, a versatile soil remediation solution. Eng Geol 77(3-4):191–201CrossRefGoogle Scholar
  51. Lageman R, Pool W, Seffinga GA (1989) Electro-reclamation. Chem Ind 18:585–590Google Scholar
  52. Lehtinen H, Saarentaus A, Rouhiainen J, Pits M, Azapagic A (2011) A review of LCA methods and tools and their suitability for SMEs. EU Project BIOCHEM, CheshireGoogle Scholar
  53. Lemming G, Hauschild MZ, Chambon J et al (2010) Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives. Environ Sci Technol 44(23):9163–9169. doi: 10.1021/es102007s CrossRefGoogle Scholar
  54. Lemming G, Chambon JC, Binning PJ, Bjerg PL (2012) Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation. J Environ Manage 112:392–403. doi: 10.1016/j.jenvman.2012.08.002 CrossRefGoogle Scholar
  55. Lesage P, Ekvall T, Deschênes L, Samson R (2007) Environmental assessment of brownfield rehabilitation using two different life cycle inventory models. Int J Life Cycle Assess 12(7):497–513. doi: 10.1065/lca2006.10.279.2 Google Scholar
  56. Li ZC, Yost RS, Green RE (1998) Incorporating uncertainty in a chemical leaching assessment. J Contam Hydrol 29:285–299CrossRefGoogle Scholar
  57. Li G, Guo S, Li S, Zhang L, Wang S (2012) Comparison of approaching and fixed anodes for avoiding the ‘focusing’ effect during electrokinetic remediation of chromium-contaminated soil. Chem Eng J 203:231–238. doi: 10.1016/j.cej.2012.07.008 CrossRefGoogle Scholar
  58. Lima AT, Kleingeld PJ, Heister K, Loch JPG (2011) Removal of PAHs from contaminated clayey soil by means of electro-osmosis. Sep Purif Technol 79(2):221–229. doi: 10.1016/j.seppur.2011.02.021 CrossRefGoogle Scholar
  59. Lima AT, Kleingeld PJ, Heister K, Loch JPG (2012a) In situ electro-osmotic cleanup of tar contaminated soil—removal of polycyclic aromatic hydrocarbons. Electrochim Acta 86:142–147CrossRefGoogle Scholar
  60. Lima AT, Ottosen LM, Heister K, Loch JPG (2012b) Assessing PAH removal from clayey soil by means of electro-osmosis and electrodialysis. Sci Total Environ 435–436:1–6CrossRefGoogle Scholar
  61. Mackay D, Shiu W-Y, Ma K-C, Lee SC (2006) Handbook of physical-chemical properties and environmental fate for organic chemicals, 2nd edn. CRC, Boca RatonGoogle Scholar
  62. Maini G, Sharman AK, Knowles CJ, Sunderland G, Jackman SA (2000) Electrokinetic remediation of metals and organics from historically contaminated soil. J Chem Technol Biotechnol 75:657–664CrossRefGoogle Scholar
  63. Mateus EP, Zrostlíková J, da Silva MDG, Ribeiro AB, Marriott P (2010) Electrokinetic removal of creosote from treated timber waste: a comprehensive gas chromatographic view. J Appl Electrochem 40(6):1183–1193CrossRefGoogle Scholar
  64. McNab WW, Narasimhan TN (1994) Modeling reactive transport of organic compounds in groundwater using a partial redox disequilibrium approach. Water Resour Res 30:2619–2635CrossRefGoogle Scholar
  65. Meeks Y, Dean J (1990) Evaluating ground‐water vulnerability to pesticides. J Water Resour Plan Manag 116:693–707CrossRefGoogle Scholar
  66. Murillo-Rivera B, Labastida I, Barron J, Oropeza-Guzman MT, Gonzalez I, Teutli-Leon MMM (2009) Influence of anolyte and catholyte composition on TPHs removal from low permeability soil by electrokinetic reclamation. Electrochim Acta 54:2119–2124CrossRefGoogle Scholar
  67. Niqui-Arroyo J-L, Ortega-Calvo J-J (2007) Integrating biodegradation and electroosmosis for the enhanced removal of polycyclic aromatic hydrocarbons from creosote-polluted soils. J Environ Qual 36:1444–1451CrossRefGoogle Scholar
  68. Nunes LM, Zhu Y-G, Stigter TY, Monteiro JP, Teixeira MR (2011) Environmental impacts on soil and groundwater at airports: origin, contaminants of concern and environmental risks. J Environ Monit 13:3026–3039CrossRefGoogle Scholar
  69. Olsen SI, Christensen FM, Hauschild M, Pedersen F, Larsen HF, Tørsløv J (2001) Life cycle impact assessment and risk assessment of chemicals—a methodological comparison. Environ Impact Assess Rev 21:385–404CrossRefGoogle Scholar
  70. Ottosen LM, Christensen IV, Rörig-Dalgård I, Jensen PE, Hansen HK (2008) Utilization of electromigration in civil and environmental engineering—processes, transport rates and matrix changes. J Environ Sci Health A 43(8):795–809. doi: 10.1080/10934520801973949 CrossRefGoogle Scholar
  71. Ottosen LM, Hansen HK, Laursen S, Villumsen A (1997) Electrodialytic remediation of soil polluted with copper from wood preservation industry. Environ Sci Technol 31(6):1711–1715CrossRefGoogle Scholar
  72. Owens JW (1996) LCA impact assessment categories. Int J Life Cycle Assess 1:151–158CrossRefGoogle Scholar
  73. Page CA, Diamond L (1999) Life-cycle frame work for assessment of site remediation options: case study. Environ Toxicol Chem 18:801–810CrossRefGoogle Scholar
  74. Page MM, Page CL (2002) Electroremediation of contaminated soils. J Environ Eng-ASCE 128(3):208–219. doi: 10.1061/(asce)0733-9372(2002)128:3(208) CrossRefGoogle Scholar
  75. Pamukcu S, Wittle JK (1992) Electrokinetic removal of selected heavy metals from soil. Environ Prog 11:241–250CrossRefGoogle Scholar
  76. Park J-Y, Kim S-J, Lee Y-J, Baek K, Yang J-W (2005) EK-Fenton process for removal of phenanthrene in a two-dimensional soil system. Eng Geol 77:217–224CrossRefGoogle Scholar
  77. Pazos M, Rosales E, Alcántara T, Gómez J, Sanromán MA (2010) Decontamination of soils containing PAHs by electroremediation: a review. J Hazard Mater 177:1–11CrossRefGoogle Scholar
  78. Postma D, Jakobsen R (1996) Redox zonation: equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochim Cosmochim Acta 60:3169–3175CrossRefGoogle Scholar
  79. Potting J, Hauschild M (1997) Part II: spatial differentiation in life-cycle assessment via the site-dependent characterisation of environmental impact from emissions. Int J Life Cycle Assess 2:209–216CrossRefGoogle Scholar
  80. Potting J, Hauschild M, Wenzel H (1999) “Less is better” and “only above threshold”: two incompatible paradigms for human toxicity in life cycle assessment? Int J Life Cycle Assess 4:16–24CrossRefGoogle Scholar
  81. Probstein RF, Hicks RE (1993) Removal of contaminants from soil by electric fields. Science 260:498–530CrossRefGoogle Scholar
  82. Rabbi MF, Clark B, Gale RJ, Ozsu-Acar E, Pardue J, Jackson A (2000) In situ TCE bioremediation study using electrokinetic cometabolite injection. Waste Manag 20:279–286CrossRefGoogle Scholar
  83. Rao PSC, Hornsby AG, Jessup RE (1985) Indices for ranking the potential for pesticide contamination of groundwater. Proc Soil Crop Sci Soc 44:1–8Google Scholar
  84. Reddy K (2010) Technical challenges to in-situ remediation of polluted sites. Geotech Geol Eng 28(3):211–221. doi: 10.1007/s10706-008-9235-y CrossRefGoogle Scholar
  85. Reddy KR (2013) Sustainability evaluation of electrokinetics and other remediation alternatives for a contaminated site: a case study. Paper presented at the 12th international symposium on electrokinetic remediation, Boston, 23–25 June 2013. http://nuweb9.neu.edu/erem2013/wp-content/uploads/2013/07/EREM2013_Final_Web.pdf
  86. Ren L, Lu H, He L, Zhang Y (2014) Enhanced electrokinetic technologies with oxidization–reduction for organically-contaminated soil remediation. Chem Eng J 247:111–124. doi: 10.1016/j.cej.2014.02.107 CrossRefGoogle Scholar
  87. Ribeiro AB, Mateus EP, Rodríguez-Maroto J-M (2011) Removal of organic contaminants from soils by an electrokinetic process: the case of molinate and bentazone. Experimental and modeling. Sep Purif Technol 79(2):193–203CrossRefGoogle Scholar
  88. Ribeiro AB, Rodríguez-Maroto JM (2006) Electroremediation of heavy metal-contaminated soils. Processes and applications. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology and bioremediation. Taylor & Francis, Boca Raton, pp 341–368Google Scholar
  89. Ribeiro AB, Rodrıguez-Maroto JM, Mateus EP, Gomes H (2005) Removal of organic contaminants from soils by an electrokinetic process: the case of atrazine: experimental and modeling. Chemosphere 59(9):1229–1239. doi: 10.1016/j.chemosphere.2004.11.054 CrossRefGoogle Scholar
  90. Rohrs J, Ludwig G, Rahner D (2002) Electrochemically induced reactions in soils—a new approach to the in-situ remediation of contaminated soils? Part 2: remediation experiments with a natural soil containing highly chlorinated hydrocarbons. Electrochim Acta 47:1405–1414CrossRefGoogle Scholar
  91. Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley, HobokenGoogle Scholar
  92. Suèr P, Andersson-Sko Y (2011) Biofuel or excavation ?—life cycle assessment (LCA) of soil remediation options. Biomass Bioenergy 35:969–981CrossRefGoogle Scholar
  93. Suèr P, Nilsson-Påledal S, Norrman J (2004) LCA for site remediation: a literature review. Soil Sediment Contam 13:415–425CrossRefGoogle Scholar
  94. Sun TR (2013) Effect of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation. PhD Thesis, Technical University of Denmark, DenmarkGoogle Scholar
  95. Therrien R, Sudicky AE (1996) Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media. J Contam Hydrol 23:1–44CrossRefGoogle Scholar
  96. Toffoletto L, Deschênes L, Samson R (2005) In LCA: case studies—using LCA to compare alternatives LCA of Ex-situ bioremediation of diesel-contaminated soil In LCA: case studies. Int J Life Cycle Assess 10:406–416CrossRefGoogle Scholar
  97. Tolle DA (1997) Special Issue: 17th SETAC Meeting 1996: LCA—selected papers lca methodology regional scaling and normalization in LCIA. Int J Life Cycle Assess 2:197–208CrossRefGoogle Scholar
  98. USEPA (2008) Life cycle assessment: principles and practice. United States Environmental Protection Agency, Washington, DCGoogle Scholar
  99. Verones F, Bartl K, Stephan P, Jime R, Hellweg S (2012) Modeling the local biodiversity impacts of agricultural water use: case study of a wetland in the coastal arid area of Peru. Environ Sci Technol 46:4966–4974CrossRefGoogle Scholar
  100. Verones F, Pfister S, Hellweg S (2013a) Quantifying area changes of internationally important wetlands due to water consumption in LCA. Environ Sci Technol 47:9799–9807CrossRefGoogle Scholar
  101. Verones F, Saner D, Pfister S, Baisero D, Rondinini C, Hellweg S (2013b) Effects of consumptive water use on biodiversity in wetlands of international importance. Environ Sci Technol 47:12248–12257CrossRefGoogle Scholar
  102. Villanueva A, Wenzel H (2007) Paper waste—recycling, incineration or landfilling? A review of existing life cycle assessments. Waste Manag 27:S29–S46CrossRefGoogle Scholar
  103. Virkutyte J, Sillanpaa M, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289:97–121CrossRefGoogle Scholar
  104. Volkwein S, Hurting H-S, Klopffer W (1999) Life cycle assessment of contaminated sites remediation. Int J Food Microbiol 4:263–274Google Scholar
  105. Wenzel H, Hauschild M, Alting L (1997) Environmental assessment of products—volume 1: methodology, tools and case studies in product development. Chapman & Hall, LondonCrossRefGoogle Scholar
  106. Yeung AT (2011) Milestone developments, myths, and future directions of electrokinetic remediation. Sep Purif Technol 79:124–132CrossRefGoogle Scholar
  107. Yuan S, Wu C, Wan J, Lu X (2008) Electromigration of cadmium in contaminated soils driven by single and multiple primary cells. J Hazard Mater 151(2–3):594–602. doi: 10.1016/j.jhazmat.2007.06.029 CrossRefGoogle Scholar
  108. Yuan S, Zheng Z, Chen J, Lu X (2009) Use of solar cell in electrokinetic remediation of cadmium-contaminated soil. J Hazard Mater 162(2):1583–1587CrossRefGoogle Scholar
  109. Zelm RV, Schipper AM, Rombouts M, Snepvangers J, Huijbregts MAJ (2011) Implementing groundwater extraction in life cycle impact assessment: characterization factors based on plant species richness for the Netherlands. Environ Sci Technol 45:629–635CrossRefGoogle Scholar
  110. Zhang T, Zou H, Ji M, Li X, Li L, Tang T (2014) Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes. Environ Sci Pollut Res 21(4):3126–3133. doi: 10.1007/s11356-013-2274-9 CrossRefGoogle Scholar
  111. Zhou M, Zhu S, Liu Y, Wang X (2013) Removal of fluorine from contaminated soil by electrokinetic treatment driven by solar energy. Environ Sci Pollut Res 20:1–7. doi: 10.1007/s11356-013-1595-z CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Luís M. Nunes
    • 1
  • Helena I. Gomes
    • 2
    • 3
    • 4
  • Margarida Ribau Teixeira
    • 5
  • Celia Dias-Ferreira
    • 6
  • Alexandra B. Ribeiro
    • 2
  1. 1.CERIS—Civil Engineering Research and Innovation for Sustainability, Faculdade de Ciências e TecnologiaUniversidade do AlgarveFaroPortugal
  2. 2.CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  3. 3.CERNAS—Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de Coimbra, Instituto Politecnico de CoimbraCoimbraPortugal
  4. 4.Department of Civil EngineeringTechnical University of DenmarkLyngbyDenmark
  5. 5.CENSE, Faculdade de Ciências e TecnologiaUniversidade do AlgarveFaroPortugal
  6. 6.CERNAS—Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de CoimbraInstituto Politecnico de CoimbraCoimbraPortugal

Personalised recommendations