Advertisement

Highly Nonlinear and Ultrafast Optical Phenomena in Metallic Nanostructures

  • L. Wimmer
  • M. Sivis
  • G. Herink
  • S. V. Yalunin
  • K. E. Echternkamp
  • C. Ropers
Chapter
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 86)

Abstract

This Chapter presents recent findings on nonlinear ionization and photoemission processes at metallic nanostructures. A particular emphasis is placed on processes which—due to the localized excitation in optical near-fields—exhibit different properties and scalings from their counterparts in the gas phase or at planar surfaces. The Chapter is structured in two parts. The first part discusses various regimes in highly nonlinear photoelectron emission from metallic nanotips, including field-driven photoemission at near- and mid-infrared frequencies, and the control of localized photoemission using intense terahertz transients. In the second part, multiphoton and strong-field ionization of atomic gases in plasmonic antennas and waveguides is presented. It is demonstrated that local ionization is enabled by optical field enhancements in various types of structures. At the same time, fundamental physical limitations preventing efficient high-harmonic generation in nanostructures are discussed.

Keywords

Harmonic GenerationHigh Harmonic Generation Kinetic Energy Distribution Kinetic Energy Spectrum Hollow Waveguide Keldysh Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Hommelhoff et al., Field emission tip as a nanometer source of free electron femtosecond pulses. Phys. Rev. Lett.96, 077401 (2006)Google Scholar
  2. 2.
    M. Krüger et al., Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011)Google Scholar
  3. 3.
    P. Dombi et al., Ultrafast strong-field photoemission from plasmonic nanoparticles. Nano Lett. 13, 674–678 (2013)Google Scholar
  4. 4.
    G. Herink et al., Field emission at terahertz frequencies: AC-tunneling and ultrafast carrier dynamics. New Journal of Physics 16, 123005 (2014)Google Scholar
  5. 5.
    S.M. Teichmann et al., Strong-field plasmonic photoemission in the mid-IR at \(<\) 1 GW/cm2 intensity. Sci. Reports 5 (2015)Google Scholar
  6. 6.
    C. Ropers et al., Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys. Rev. Lett. 98(4), 043907 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    M. Schenk et al., Strong-field above-threshold photoemission from sharp metal tips. Phys. Rev. Lett. 105(25), 257601 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    R. Bormann et al., Tip-enhanced strong-field photoemission. Phys. Rev. Lett. 105(14), 147601 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    S. Yalunin et al., Strong-field photoemission from surfaces: theoretical approaches. Phys. Rev. B. 84, 195426 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    S. Zherebtsov et al., Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields. Nat. Phys. 7(8), 656–662 (2011)CrossRefGoogle Scholar
  11. 11.
    G. Herink et al., Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483(7388), 190–193 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    L. Wimmer et al., Terahertz control of nanotip photoemission. Nat. Phys. 10(6), 432–436 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Kim et al., High-harmonic generation by resonant plasmon field enhancement. Nature 453(7196), 757–760 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    I.-Y. Park et al., Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nat. Photonics 5(11), 677–681 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    M. Sivis et al., Nanostructure-enhanced atomic line emission. Nature 485(7397), E1–E2 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    I.-Y. Park et al., Generation of EUV radiation by plasmonic field enhancement using nano-structured bowties and funnel-waveguides. Ann. Phys. 525(1–2), 87–96 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Sivis et al., Extreme-ultraviolet light generation in plasmonic nanostructures. Nat. Phys. 9(5), 304–309 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Sivis, C. Ropers, Generation and bistability of a waveguide nanoplasma observed by enhanced extreme-ultraviolet fluorescence. Phys. Rev. Lett. 111(8), 085001 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    N. Pfullmann et al., Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation. New J. Phys. 15(9), 093027 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    S.V. Yalunin et al., Field localization and rescattering in tip-enhanced photoemission. Ann. Phys. 525(1–2), L12–L18 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 322(6), 132–148 (1905)CrossRefGoogle Scholar
  22. 22.
    L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965)MathSciNetGoogle Scholar
  23. 23.
    B. Barwick et al., Laser-induced ultrafast electron emission from a field emission tip. New J. Phys. 9(5), 142 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    R.H. Fowler, The analysis of photoelectric sensitivity curves for clean metals at various temperatures. Phys. Rev. 38, 45–56 (1931)ADSCrossRefGoogle Scholar
  25. 25.
    L.A. DuBridge, Theory of the energy distribution of photoelectrons. Phys. Rev. 43, 727–741 (1933)ADSCrossRefGoogle Scholar
  26. 26.
    L.A. DuBridge, R.C. Hergenrother, The effect of temperature on the energy distribution of photoelectrons. i. normal energies. Phys. Rev. 44, 861–865 (1933)ADSCrossRefGoogle Scholar
  27. 27.
    P. Agostini et al., Free-free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127–1130 (1979)ADSCrossRefGoogle Scholar
  28. 28.
    F. Banfi et al., Experimental evidence of above-threshold photoemission in solids. Phys. Rev. Lett. 94, 037601 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    R. Kopold et al., Channel-closing effects in high-order above-threshold ionization and high-order harmonic generation. J. Phys. B: Atom. Mol. Opt. Phys. 35(2), 217 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    W. Schottky, Über kalte und warme Elektronenentladungen. Z. Angew. Phys. 14(1), 63–106 (1923)Google Scholar
  31. 31.
    R. Gomer. Field Emission and Field Ionization (Harvard University Press, Cambridge, 1961)Google Scholar
  32. 32.
    R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. R. Soc. Lond. Proc. Ser. A 119, 173–181 (1928)ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    G. Farkas et al., Influence of optical field emission on the nonlinear photoelectric effect induced by ultrashort laser pulses. Phys. Lett. A 39(3), 231–232 (1972)ADSCrossRefGoogle Scholar
  34. 34.
    P.B. Corkum, Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71(13), 1994 (1993)Google Scholar
  35. 35.
    J.L. Krause et al., High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535–3538 (1992)ADSCrossRefGoogle Scholar
  36. 36.
    G.G. Paulus et al., Rescattering effects in above-threshold ionization: a classical model. J. Phys. B: Atom. Mol. Opt. Phys. 27(21), L703 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    G.G. Paulus et al., Plateau in above threshold ionization spectra. Phys. Rev. Lett. 72, 2851–2854 (1994)ADSCrossRefGoogle Scholar
  38. 38.
    F. Kelkensberg et al., Attosecond streaking in a nano-plasmonic field. New J. Phys. 14(9), 093034 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    J. Itatani et al., Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    P. Agostini et al., Direct evidence of ponderomotive effects via laser pulse duration in above-threshold ionization. Phys. Rev. A 36, 4111–4114 (1987)ADSCrossRefGoogle Scholar
  41. 41.
    E. Goulielmakis et al., Direct measurement of light waves. Science 305(5688), 1267–1269 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    E. Goulielmakis et al., Attosecond control and measurement: lightwave electronics. Science 317(5839), 769–775 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    M.I. Stockman et al., Attosecond nanoplasmonic-field microscope. Nat. Photon 1(9), 539–544 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    E. Skopalová et al., Numerical simulation of attosecond nanoplasmonic streaking. New J. Phys. 13(8), 083003 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    F. Süßmann, M.F. Kling, Attosecond nanoplasmonic streaking of localized fields near metal nanospheres. Phys. Rev. B 84, 121406 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    A.G. Borisov et al., Attostreaking with metallic nano-objects. New J. Phys. 14(2), 023036 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    D.J. Cook, R.M. Hochstrasser, Intense terahertz pulses by four-wave rectification in air. Opt. Lett. 25(16), 1210–1212 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    H.G. Roskos et al., Broadband thz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications. Laser Photonics Rev. 1(4), 349–368 (2007)CrossRefGoogle Scholar
  49. 49.
    K. Wang et al., Antenna effects in terahertz apertureless near-field optical microscopy. Appl. Phys. Lett. 85(14), 2715–2717 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    R. Kersting et al., Terahertz microscopy with submicrometre resolution. J. Opt. A: Pure Appl. Opt. 7(2), S184 (2005)MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    J.A. Schuller et al., Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9(3), 193–204 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Photonics 6(11), 737–748 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    D.K. Gramotnev, S.I. Bozhevolnyi, Nanofocusing of electromagnetic radiation. Nat. Photonics 8(1), 13–22 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    A. McPherson et al., Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4(4), 595 (1987)ADSCrossRefGoogle Scholar
  55. 55.
    X. Li et al., Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 39(11), 5751–5761 (1989)ADSCrossRefGoogle Scholar
  56. 56.
    A. Husakou et al., Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases. Phys. Rev. A 83(4), 043839 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    M.F. Ciappina et al., Enhancement of high harmonic generation by confining electron motion in plasmonic nanostructures. Opt. Express 20(24), 26261 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    M.F. Ciappina et al., High order harmonic generation in noble gases using plasmonic field enhancement. Ann. Phys. 525(1–2), 97–106 (2013)CrossRefzbMATHGoogle Scholar
  59. 59.
    I. Yavuz et al., Generation of a broadband xuv continuum in high-order-harmonic generation by spatially inhomogeneous fields. Phys. Rev. A 85(1), 013416 (2012)MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    Y.-Y. Yang et al., High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses. Opt. Express 21(2), 2195 (2013)ADSCrossRefGoogle Scholar
  61. 61.
    X. Cao et al., Generation of isolated sub-10-attosecond pulses in spatially inhomogenous two-color fields. Opt. Express 22(21), 26153 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    P.B. Corkum, F. Krausz, Attosecond science. Nat. Phys. 3(6), 381–387 (2007)CrossRefGoogle Scholar
  63. 63.
    P.H. Bucksbaum, The future of attosecond spectroscopy. Science (New York, N.Y.) 317(5839), 9–766 (2007)CrossRefGoogle Scholar
  64. 64.
    R.L. Sandberg et al., High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution. Proc. Natl. Acad. Sci. U.S.A. 105(1), 7–24 (2008)MathSciNetCrossRefGoogle Scholar
  65. 65.
    T. Brabec, F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    P.M. Paul et al., Observation of a train of attosecond pulses from high harmonic generation. Science (New York, N.Y.) 292(5522), 92–1689 (2001)CrossRefGoogle Scholar
  67. 67.
    M. Hentschel et al., Attosecond metrology. Nature 414(6863), 509–513 (2001)ADSCrossRefGoogle Scholar
  68. 68.
    J. Krause et al., High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68(24), 3535–3538 (1992)ADSCrossRefGoogle Scholar
  69. 69.
    E.A. Gibson et al., Coherent soft x-ray generation in the water window with quasi-phase matching. Science (New York, N.Y.) 302(5642), 8–95 (2003)CrossRefGoogle Scholar
  70. 70.
    T. Popmintchev et al., Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Natl. Acad. Sci. U.S.A. 106(26), 21–10516 (2009)CrossRefGoogle Scholar
  71. 71.
    C. Gohle et al., A frequency comb in the extreme ultraviolet. Nature 436(7048), 7–234 (2005)ADSCrossRefGoogle Scholar
  72. 72.
    A. Cingöz et al., Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482(7383), 68–71 (2012)ADSCrossRefGoogle Scholar
  73. 73.
    P. Laporte et al., Pulsed-laser-generated rare-gas plasma as a light source in the vacuum ultraviolet. Opt. Lett. 12(12), 9–987 (1987)MathSciNetCrossRefGoogle Scholar
  74. 74.
    J.K. Crane et al., Coherent and incoherent XUV emission in helium and neon, laser-driven plasmas. IEEE Trans. Plasma Sci. 21(1), 82–89 (1993)ADSCrossRefGoogle Scholar
  75. 75.
    R. Coffee, G. Gibson, Vuv fluorescence from selective high-order multiphoton excitation of N\(_2\). Phys. Rev. A 69(5), 053407 (2004)ADSCrossRefGoogle Scholar
  76. 76.
    C. Kern et al., Comparison of femtosecond laser-induced damage on unstructured vs. nano-structured Au-targets. Appl. Phys. A 104(1), 15–21 (2011)MathSciNetADSCrossRefGoogle Scholar
  77. 77.
    J.E. Sansonetti, W.C. Martin, Handbook of basic atomic spectroscopic data. J. Phys. Chem. Ref. Data 34(4), 1559 (2005)ADSCrossRefGoogle Scholar
  78. 78.
    Y.R. Shen, Surface properties probed by second-harmonic and sum-frequency generation. Nature 337(6207), 519–525 (1989)ADSCrossRefGoogle Scholar
  79. 79.
    M.B. Raschke, High-harmonic generation with plasmonics: feasible or unphysical? Ann. Phys. 525(3), A40–A42 (2013)ADSCrossRefGoogle Scholar
  80. 80.
    H.M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, New York, 1985)Google Scholar
  81. 81.
    G. Wurtz et al., Optical bistability in nonlinear surface-plasmon polaritonic crystals. Phys. Rev. Lett. 97(5), 057402 (2006)MathSciNetADSCrossRefGoogle Scholar
  82. 82.
    Y. Shen, G.P. Wang, Optical bistability in metal gap waveguide nanocavities. Opt. express 16(12), 6–8421 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • L. Wimmer
    • 1
  • M. Sivis
    • 1
  • G. Herink
    • 1
  • S. V. Yalunin
    • 1
  • K. E. Echternkamp
    • 1
  • C. Ropers
    • 1
  1. 1.IV. Physical Institute—Solids and NanostructuresUniversity of GöttingenGöttingenGermany

Personalised recommendations