Biografo: An Integrated Tool for Forensic Writer Identification

  • Javier Galbally
  • Santiago Gonzalez-Dominguez
  • Julian Fierrez
  • Javier Ortega-Garcia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8915)

Abstract

The design and performance of a practical integrated tool for writer identification in forensic scenarios is presented. The tool has been designed to help forensic examiners along the complete identification process: from the data acquisition to the recognition itself, as well as with the management of large writer-related databases. The application has been implemented using JavaScript running over a relational database which provides the whole system with some very desirable and unique characteristics such as the possibility to perform all type of queries (e.g., find individuals with some very discriminative character, find a specific document, display all the samples corresponding to one writer, etc.), or a complete control over the set of parameters we want to use in a specific recognition task (e.g., users in the database to be used as control set, set of characters to be used in the identification, size of the ranked list we want as final result, etc.). The identification performance of the tool is evaluated on a real-case forensic database showing some very promising results.

Keywords

Forensics Writer identification Data acquisition Database management 

References

  1. 1.
    Srihari, S., Huang, C., Srinivasan, H., Shah, V.: Biometric and Forensic Aspects of Digital Document Processing. In: Digital Document Processing, pp. 379–406. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Srihari, S., Cha, S., Arora, H., Lee, S.: Individuality of handwriting. J. Forensic Sci. 47, 856–872 (2002)Google Scholar
  3. 3.
    Plamondon, R., Srihari, S.: On-line and off-line handwriting recognition: a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 22, 63–84 (2000)CrossRefGoogle Scholar
  4. 4.
    Srihari, S., Leedham, G.: A survey of computer methods in forensic document examination. In: Proceedings of the International Graphonomics Society Conference (IGS), pp. 278–281 (2003)Google Scholar
  5. 5.
    Schomaker, L.: Writer identification and verification. In: Ratha, N.K., Govindaraju, V. (eds.) Advances in Biometrics: Sensors, Algorithms and Systems, pp. 247–264. Springer, London (2007)Google Scholar
  6. 6.
    Srihari, S.N., Ganesh, A., Tomai, C., Shin, Y.-C., Huang, C.: Information retrieval system for handwritten documents. In: Marinai, S., Dengel, A.R. (eds.) DAS 2004. LNCS, vol. 3163, pp. 298–309. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  7. 7.
    Franke, K., Schomaker, L., Veenhuis, C., Taubenheim, C., Guyon, I., Vuurpijl, L., Erp, M., Zwarts, G.: WANDA: a generic framework applied in forensic handwriting analysis and writer identification. In: Proceedings of the International Conference on Hybrid Intelligent Systems (HIS) (2003)Google Scholar
  8. 8.
    Tapiador, M.: Análisis de las Características de Identificación Biométrica de la Escritura Manuscrita y Mecanográfica. Ph.D. thesis, Escuela Politécnica Superior, Universidad Autónoma de Madrid (2006)Google Scholar
  9. 9.
    Otsu, N.: A threshold selection method for gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)CrossRefGoogle Scholar
  10. 10.
    Gonzalez, R., Woods, R.: Digital Image Processing. Addison-Wesley, Reading (2002) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Javier Galbally
    • 1
  • Santiago Gonzalez-Dominguez
    • 1
  • Julian Fierrez
    • 1
  • Javier Ortega-Garcia
    • 1
  1. 1.Biometric Recognition Group-ATVS, EPSUniversidad Autonoma de MadridMadridSpain

Personalised recommendations