Evaluation of the Cross Wind Velocity Through Pressure Measurements on Train Surface

  • F. Cheli
  • L. Mariano
  • D. Rocchi
  • P. Schito
  • G. Tomasini
Conference paper
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 79)


The paper presents the results of a research activity studying the possibility to evaluate the cross wind velocity acting on a running train though surface pressure measurements. The research exploits the know-how developed in the aerospace field on FADS (Flush Air Data sensing Systems) and performs a complete design of the system. In particular, the choice of the number and the position of pressure taps on the surface of the train leading car is optimized, in terms of measurement system sensitivity and robustness, using a neural network approach and wind tunnel test results. A calibration of the system is performed and validated using wind tunnel tests on a moving train model.


Train Flush Air Data System Neural network CWC Wind tunnel test Moving model 


  1. 1.
    Cary, J.P., Keener, E.R.: Flight evaluation of the X-15 Ball-Nose Flow-Direction sensor as a airdata system. NASA TN D-2923 (1965)Google Scholar
  2. 2.
    Wolowicz, C.H., Gosett, T.D.: Operational and performance characteristics of the X-15 spherical hypersonic flow direction sensor. NASA TN D-3076 (1965)Google Scholar
  3. 3.
    Larson, T.J., Siemers III, P.M.: Subsonic tests of an All-Flush-Pressure-Orifice air data system. NASA TP 1871 (1981)Google Scholar
  4. 4.
    Larson, T.J., Whitmore, S.A., Ehernberger, L.J., Johnson, J.B., Siemers III, P.M.: Qualitative evaluation of a flush air data system at transonic speeds and high angles of attack. NASA TP-2716 (1987)Google Scholar
  5. 5.
    Larson, T.J., Moes, T.R., Siemers III, P.M.: Wind tunnel investigation of a flush airdata system at Mach numbers from 0.7 to 1.4. NASA TM-101697 (1990)Google Scholar
  6. 6.
    Whitmore, S.A., Davis, R.J., Fife, J.M.: In flight demonstration of a real time flush airdata sensing system. NASA TM 104314 (1995)Google Scholar
  7. 7.
    Rohloff, T.: Development and evaluation of neural network flush air data sensing systems, Ph.D. thesis, Department of Mechanical Engineering, University of California (1998)Google Scholar
  8. 8.
    Crowther, W.J., Lamont, P.J.: A neural network approach to the calibration of a flush air data system. Aeronaut. J. 105, 85–95 (2001)Google Scholar
  9. 9.
    Brown, E.N., Friehe, C.A., Lenschow, D.H.: The use of pressure fluctuations on the nose of an aircraft for measuring air motion. J. Clim. Appl. Meteorol. 22, 171–180 (1983)CrossRefGoogle Scholar
  10. 10.
    Rediniotis, O., Vijayagopal, R.: Miniature multihole pressure probes and their neural network based calibration. AIAA J. 37, 666–674 (1999)CrossRefGoogle Scholar
  11. 11.
    Rediniotis, O., Chrysanthakopoulos, G.: Application of neural networks and fuzzy logic to the calibration of the seven-hole probe. J. Fluid. Eng. Trans. ASME 120, 95–101 (1998)CrossRefGoogle Scholar
  12. 12.
    Calia, A., Denti, E., Schettini, E., Di Fusco, C.: Ricostruzione degli angoli di incidenza e di derapata per velivolo mediante elaborazione dei dati aria basate su reti neurali. Università degli studi di Pisa. Tesi di laurea specialistica in ingegneria Aeronautica (2006)Google Scholar
  13. 13.
    Maggiani, G.: Sviluppo di metodologie basate su reti neurali per l’elaborazione dei dati aria dei velivoli. Università degli studi di Pisa. Tesi di laurea specialistica in ingegneria Aeronautica (2008)Google Scholar
  14. 14.
    European Standard prEN 14067–1Google Scholar
  15. 15.
    Demuth, H., Beale, M., Hagan, M.: Neural Network Toolbox\(^{\rm {TM}}\) 6. Matla\(^{\textregistered }\) User’s Guide (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • F. Cheli
    • 1
  • L. Mariano
    • 1
  • D. Rocchi
    • 1
  • P. Schito
    • 1
  • G. Tomasini
    • 1
  1. 1.Politecnico di MilanoMilanoItaly

Personalised recommendations