High-Speed Train Crosswind Analysis: CFD Study and Validation with Wind-Tunnel Tests

  • Carlo Catanzaro
  • Federico Cheli
  • Daniele Rocchi
  • Paolo Schito
  • Gisella Tomasini
Conference paper
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 79)


The correct definition of the crosswind aerodynamic forces on a high speed train is important to judge the safety of the rolling stock. Different conditions in terms of scenario (DTBR, EMBK and presence of wind barriers) and in terms of train motion are compared in the paper considering the aerodynamic forces and moments that mostly contribute to the overturning risk of the train while it is running under crosswind. The results of CFD simulations are compared and validated with experimental wind tunnel tests. The numerical model allows to make a comparison between the aerodynamic forces computed on the train for different angles of incidence, simulating a still model and a moving train model. The still model reproduces what is tested in the wind tunnel, while the moving model simulates the real condition of a train running under crosswind. This work analyzes the aerodynamic behavior of a ETR-500 train under crosswind in different scenarios.


  1. 1.
    EC, TSI, Technical Specification for Interoperability of the trans-European high speed rail system. European Law, Official Journal of the European Communities (2006)Google Scholar
  2. 2.
    Dietrichs, B., Sima, M., Orellano, A., Tengstrand, H.: Crosswind stability of a high speed train on a high embankment. J. Rail Rapid Transit 221(Part F), 205–225 (2006)Google Scholar
  3. 3.
    Tomasini, G.: Analisi numerico-sperimentale delle forze aerodinamiche sui veicoli ferroviari (2005)Google Scholar
  4. 4.
    Baker, C.J.: Ground vehicles in high cross winds part I. Steady aerodynamic forces. J. Fluids Struct. 5, 69–90 (1991)CrossRefGoogle Scholar
  5. 5.
    Bocciolone, M., Cheli, F., Corradi, R., Muggiasca, S., Tomasini, G.: Crosswind action on rail vehicles: wind tunnel experimental analyses. J. Wind Eng. Ind. Aerodyn. 96, 584–610 (2008)CrossRefGoogle Scholar
  6. 6.
    Cooper, R.K.: Atmospheric turbulence with respect to moving ground vehicles. J. Wind Eng. Ind. Aerodyn. 17, 215–238 (1985)CrossRefGoogle Scholar
  7. 7.
    Li, Y., Hu, P., Zhang, M., Liao, H.: Wind tunnel test with moving vehicle model for aerodynamic forces of vehicle-bridge systems under crosswind. In: APCWE 7 The Seventh Asia-Pacific Conference on Wind Engineering, Taiwan (2009)Google Scholar
  8. 8.
    Dietrichs, B.: Aerodynamic calculations of crosswind stability af a high speed train using control volumes of arbitrary polyhedral shape. In: BBAA VI International Colloquium on Bluff Body Aerodynamics and Applications, Milano (2008)Google Scholar
  9. 9.
    Khier, W., Breuer, M., Durst, F.: Flow structure around trains under side wind conditions: a numerical study. Comput. Fluids 29, 179–195 (2000)CrossRefMATHGoogle Scholar
  10. 10.
    Cheli, F., Diana, G., Schito, P., Tomasini, G., Volpe, R.: Sulleffetto di barriere antivento sui veicoli ferroviari: analisi sperimentali in galleria del vento. In: IN-VENTO 2010, Spoleto, Italy (2010)Google Scholar
  11. 11.
    CEN, pr EN 14067–1: Railway Applications—Aerodynamics, Part I: Symbols and Units (2002)Google Scholar
  12. 12.
    Vigano, A., Volpe, R.: Analisi numerico-sperimentale dell’effetto di barriere frangivento sui veicoli ferroviari (2009)Google Scholar
  13. 13.
    Catanzaro, C.: Modelli CFD per l’analisi dell’effetto di barriere frangivento sui veicoli ferroviari—confronti con risultati sperimentali (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Carlo Catanzaro
    • 1
  • Federico Cheli
    • 1
  • Daniele Rocchi
    • 1
  • Paolo Schito
    • 1
  • Gisella Tomasini
    • 1
  1. 1.Politecnico di MilanoMilanoItaly

Personalised recommendations