Separation of Generic Cutting Planes in Branch-and-Price Using a Basis

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9125)

Abstract

Dantzig-Wolfe reformulation of a mixed integer program partially convexifies a subset of the constraints, i.e., it implicitly adds all valid inequalities for the associated integer hull. Projecting an optimal basic solution of the reformulation’s LP relaxation to the original space does in general not yield a basic solution of the original LP relaxation. Cutting planes in the original problem that are separated using a basis like Gomory mixed integer cuts are therefore not directly applicable. Range [22] (and others) proposed as a remedy to heuristically compute a basic solution and separate this auxiliary solution also with cutting planes that stem from a basis. This might not only cut off the auxiliary solution, but also the solution we originally wanted to separate.

We discuss and extend Range’s ideas to enhance the separation procedure. In particular, we present alternative heuristics and consider additional valid inequalities strengthening the original LP relaxation before separation. Our full implementation, which is the first of its kind, is done within the GCG framework. We evaluate the effects on several problem classes. Our experiments show that the separated cuts strengthen the formulation on instances where the integrality gap is not too small. This leads to a reduced number of nodes and reduced solution times.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin (2007)Google Scholar
  2. 2.
    Beasley, J.: OR-Library: Distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990)CrossRefGoogle Scholar
  3. 3.
    Bergner, M., Caprara, A., Ceselli, A., Furini, F., Lübbecke, M., Malaguti, E., Traversi, E.: Automatic Dantzig-Wolfe reformulation of mixed integer programs. Math. Prog. 149(1–2), 391–424 (2015)MATHCrossRefGoogle Scholar
  4. 4.
    Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific, Belmont (1997)Google Scholar
  5. 5.
    Bixby, R., Rothberg, E.: Progress in computational mixed integer programming - A look back from the other side of the tipping point. Annals of Operations Research 149(1), 37–41 (2007). http://dx.doi.org/10.1007/s10479-006-0091-y MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bode, C., Irnich, S.: Cut-first branch-and-price-second for the capacitated arc-routing problem. Oper. Res. 60(5), 1167–1182 (2012)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Caprara, A., Furini, F., Malaguti, E.: Uncommon Dantzig-Wolfe reformulation for the temporal knapsack problem. INFORMS J. Comput. 25(3), 560–571 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cattrysse, D.G., Salomon, M., Wassenhove, L.N.V.: A set partitioning heuristic for the generalized assignment problem. European J. Oper. Res. 72(1), 167–174 (1994)MATHCrossRefGoogle Scholar
  9. 9.
    Chu, P.C., Beasley, J.E.: A genetic algorithm for the generalised assignment problem. Comput. Oper. Res. 24(1), 17–23 (1997)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Dash, S., Goycoolea, M.: A heuristic to generate rank-1 GMI cuts. Math. Program. Comput. 2(3–4), 231–257 (2010)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Desaulniers, G., Desrosiers, J., Spoorendonk, S.: Cutting planes for branch-and-price algorithms. Networks 58(4), 301–310 (2011)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Desrosiers, J., Lübbecke, M.E.: Branch-price-and-cut algorithms. In: Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopedia of Operations Research and Management Science. John Wiley & Sons, Inc. (2010)Google Scholar
  13. 13.
    Galassi, M., et al.: GNU scientific library reference manual. ISBN 0954612078Google Scholar
  14. 14.
    Galati, M.: Decomposition methods for integer linear programming. Ph.D. thesis, Lehigh University (2010)Google Scholar
  15. 15.
    Gamrath, G., Lübbecke, M.E.: Experiments with a generic Dantzig-Wolfe decomposition for integer programs. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 239–252. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  16. 16.
    Goncalves, A.S.: Basic feasible solutions and the Dantzig-Wolfe decomposition algorithm. J. Oper. Res. Soc. 19(4), 465–469 (1968)CrossRefGoogle Scholar
  17. 17.
    Irnich, S., Desaulniers, G., Desrosiers, J., Hadjar, A.: Path-reduced costs for eliminating arcs in routing and scheduling. INFORMS J. Comput. 22(2), 297–313 (2010)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Osman, I.H.: Heuristics for the generalised assignment problem: Simulated annealing and tabu search approaches. OR Spectrum 17(4), 211–225 (1995)MATHCrossRefGoogle Scholar
  19. 19.
    Poggi de Aragão, M., Uchoa, E.: Integer program reformulation for robust branch-and-cut-and-price. In: Mathematical Programming in Rio: A Conference in Honour of Nelson Maculan, pp. 56–61 (2003)Google Scholar
  20. 20.
    Puchinger, J., Stuckey, P., Wallace, M., Brand, S.: Dantzig-Wolfe decomposition and branch-and-price solving in G12. Constraints 16(1), 77–99 (2011)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Ralphs, T., Galati, M.: DIP - Decomposition for integer programming (2009). https://projects.coin-or.org/Dip
  22. 22.
    Range, T.: An integer cutting-plane procedure for the Dantzig-Wolfe decomposition: Theory. Discussion Papers on Business and Economics 10/2006, Dept. Business and Economics. University of Southern Denmark (2006)Google Scholar
  23. 23.
    Rios, J., Ross, K.: Converging upon basic feasible solutions through Dantzig-Wolfe decomposition. Optim. Lett. 8(1), 171–180 (2014)MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Tempelmeier, H., Derstroff, M.: A lagrangean-based heuristic for dynamic multilevel multiitem constrained lotsizing with setup times. Management Science 42(5), 738–757 (1996)MATHCrossRefGoogle Scholar
  25. 25.
    Vanderbeck, F.: BaPCod - A generic branch-and-price code (2005). https://wiki.bordeaux.inria.fr/realopt/pmwiki.php/Project/BaPCod
  26. 26.
    Vanderbeck, F., Savelsbergh, M.: A generic view of Dantzig-Wolfe decomposition in mixed integer programming. Oper. Res. Lett. 34(3), 296–306 (2006)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Operations ResearchRWTH Aachen UniversityAachenGermany

Personalised recommendations