Graph Partitioning for Independent Sets

  • Sebastian Lamm
  • Peter Sanders
  • Christian SchulzEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9125)


Computing maximum independent sets in graphs is an important problem in computer science. In this paper, we develop an evolutionary algorithm to tackle the problem. The core innovations of the algorithm are very natural combine operations based on graph partitioning and local search algorithms. More precisely, we employ a state-of-the-art graph partitioner to derive operations that enable us to quickly exchange whole blocks of given independent sets. To enhance newly computed offsprings we combine our operators with a local search algorithm. Our experimental evaluation indicates that we are able to outperform state-of-the-art algorithms on a variety of instances.


Vertex Cover Local Search Algorithm Graph Partitioning Maximum Clique Problem Solution Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrade, D.V., Resende, M.G.C., Werneck, R.F.: Fast Local Search for the Maximum Independent Set Problem. J. Heuristics 18(4), 525–547 (2012)CrossRefGoogle Scholar
  2. 2.
    Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Ph.D thesis (1996)Google Scholar
  3. 3.
    Bäck, T., Khuri, S.: An evolutionary heuristic for the maximum independent set problem. In: Proc. 1st IEEE Conf. on Evolutionary Computation, pp. 531–535. IEEE (1994)Google Scholar
  4. 4.
    Bader, D., Kappes, A., Meyerhenke, H., Sanders, P., Schulz, C., Wagner, D.: Benchmarking for graph clustering and partitioning. In: Encyclopedia of Social Network Analysis and Mining. Springer (2014)Google Scholar
  5. 5.
    Battiti, R., Protasi, M.: Reactive Local Search for the Maximum Clique Problem. Algorithmica 29(4), 610–637 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Borisovsky, P.A., Zavolovskaya, M.S.: Experimental comparison of two evolutionary algorithms for the independent set problem. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 154–164. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  7. 7.
    Davis, T.: The University of Florida Sparse Matrix CollectionGoogle Scholar
  8. 8.
    De Jong, K.A.: Evolutionary Computation: A Unified Approach. MIT Press (2006)Google Scholar
  9. 9.
    Feo, T.A., Resende, M.G.C., Smith, S.H.: A Greedy Randomized Adaptive Search Procedure for Maximum Independent Set. Operations Research 42(5), 860–878 (1994)zbMATHCrossRefGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979)Google Scholar
  11. 11.
    Gemsa, A., Niedermann, B., Nöllenburg, M.: Trajectory-based dynamic map labeling. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 413–423. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  12. 12.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley (1989)Google Scholar
  13. 13.
    Grosso, A., Locatelli, M., Della Croce, F.: Combining Swaps and Node Weights in an Adaptive Greedy Approach for the Maximum Clique Problem. J. Heuristics 10(2), 135–152 (2004)CrossRefGoogle Scholar
  14. 14.
    Grosso, A., Locatelli, M., Pullan, W.: Simple Ingredients Leading to Very Efficient Heuristics for the Maximum Clique Problem. J. Heuristics 14(6), 587–612 (2008)CrossRefGoogle Scholar
  15. 15.
    Hansen, P., Mladenović, N., Urošević, D.: Variable Neighborhood Search for the Maximum Clique. Discrete Applied Mathematics 145(1), 117–125 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Katayama, K., Hamamoto, A., Narihisa, H.: An Effective Local Search for the Maximum Clique Problem. Inf. Proc. Letters 95(5), 503–511 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Lamm, S.: Evolutionary Algorithms for Independent Sets. Bachelor’s Thesis, KIT (2014)Google Scholar
  18. 18.
    Lamm, S., Sanders, P., Schulz, C.: Graph Partitioning for Independent Sets. Technical Report arxiv:1502.01687 (2015)Google Scholar
  19. 19.
    Meyerhenke, H., Sanders, P., Schulz, C.: Partitioning complex networks via size-constrained clustering. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 351–363. Springer, Heidelberg (2014) Google Scholar
  20. 20.
    Miller, B.L., Goldberg, D.E.: Genetic Algorithms, Tournament Selection, and the Effects of Noise. Evolutionary Computation 4(2), 113–131 (1996)CrossRefGoogle Scholar
  21. 21.
    Pullan, W.J., Hoos, H.H.: Dynamic Local Search for the Maximum Clique Problem. J. Artif. Intell. Res. (JAIR) 25, 159–185 (2006)zbMATHGoogle Scholar
  22. 22.
    Sanders, P., Schulz, C.: KaHIP - Karlsruhe High Qualtity Partitioning Homepage.
  23. 23.
    Sanders, P., Schulz, C.: Think locally, act globally: highly balanced graph partitioning. In: Demetrescu, C., Marchetti-Spaccamela, A., Bonifaci, V. (eds.) SEA 2013. LNCS, vol. 7933, pp. 164–175. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  24. 24.
    Soper, A.J., Walshaw, C., Cross, M.: A Combined Evolutionary Search and Multilevel Optimisation Approach to Graph-Partitioning. J. of Global Optimization 29(2), 225–241 (2004)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sebastian Lamm
    • 1
  • Peter Sanders
    • 1
  • Christian Schulz
    • 1
    Email author
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations