The Effect of Almost-Empty Faces on Planar Kandinsky Drawings

  • Michael A. Bekos
  • Michael Kaufmann
  • Robert Krug
  • Martin Siebenhaller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9125)

Abstract

Inspired by the recently-introduced slanted orthogonal graph drawing model, we introduce and study planar Kandinsky drawings with almost-empty faces (i.e., faces that were forbidden in the classical Kandinsky model).

Based on a recent NP-completeness result for Kandinsky drawings by Bläsius et al., we present and experimentally evaluate (i) an ILP that computes bend-optimal Kandinsky drawings with almost-empty faces, and, (ii) a more efficient heuristic that results in drawings with relatively few bends. Our evaluation shows that the new model, in the presence of many triangular faces, not only improves the number of bends, but also the compactness of the resulting drawings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barth, W., Mutzel, P., Yıldız, C.: A new approximation algorithm for bend minimization in the kandinsky model. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 343–354. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  2. 2.
    Bekos, M.A., Kaufmann, M., Krug, R., Näher, S., Roselli, V.: Slanted orthogonal drawings. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 424–435. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with the minimum number of bends. IEEE Transactions on Computers 49(8), 826–840 (2000)CrossRefGoogle Scholar
  4. 4.
    Bläsius, T., Brückner, G., Rutter, I.: Complexity of higher-degree orthogonal graph embedding in the kandinsky model. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 161–172. Springer, Heidelberg (2014) Google Scholar
  5. 5.
    Chen, D.S., Batson, R.G., Dang, Y.: Applied Integer Programming: Modeling and Solution. Wiley (2010)Google Scholar
  6. 6.
    Di Battista, G., Didimo, W., Patrignani, M., Pizzonia, M.: Orthogonal and quasi-upward drawings with vertices of prescribed size. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 297–310. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  7. 7.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall PTR (1998)Google Scholar
  8. 8.
    Duncan, C.A., Goodrich, M.T.: Graph drawing and cartography. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, chap. 7, pp. 223–246. CRC Press (2013)Google Scholar
  9. 9.
    Eiglsperger, M.: Automatic Layout of UML Class Diagrams: A Topology-Shape-Metrics Approach. Ph.D. thesis, Universität Tübingen (2003)Google Scholar
  10. 10.
    Eiglsperger, M., Fekete, S.P., Klau, G.W.: Orthogonal Graph Drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 121–171. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  11. 11.
    Eiglsperger, M., Fößmeier, U., Kaufmann, M.: Orthogonal graph drawing with constraints. In: Shmoys, D.B. (ed.) Symposium on Discrete Algorithms, pp. 3–11. ACM/SIAM (2000)Google Scholar
  12. 12.
    Eiglsperger, M., Kaufmann, M.: Fast compaction for orthogonal drawings with vertices of prescribed size. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 124–138. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  13. 13.
    Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, Franz J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  14. 14.
    Gurobi Optimization, I.: Gurobi optimizer reference manual (2014). http://www.gurobi.com
  15. 15.
    Leiserson, C.E.: Area-efficient graph layouts. In: Foundations of Computer Science, pp. 270–281. IEEE Computer Society (1980)Google Scholar
  16. 16.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM Journal of Computing 16(3), 421–444 (1987)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Transaction on Computers 100(2), 135–140 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michael A. Bekos
    • 1
  • Michael Kaufmann
    • 1
  • Robert Krug
    • 1
  • Martin Siebenhaller
    • 2
  1. 1.Wilhelm-Schickard-Institut Für Informatik, Universität TübingenTübingenGermany
  2. 2.yWorks GmbHTübingenGermany

Personalised recommendations