SALT. A Unified Framework for All Shortest-Path Query Variants on Road Networks

  • Alexandros Efentakis
  • Dieter Pfoser
  • Yannis Vassiliou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9125)

Abstract

Although recent scientific literature focuses on multiple shortest-path (SP) problem definitions for road networks, none of the existing solutions can efficiently answer all the different SP query variations. This work proposes SALT, a novel framework that not only efficiently answers most SP queries but also k-nearest neighbor queries not tackled by previous methods. Our solution offers excellent query performance and very short preprocessing times, thus making it also a viable option for dynamic, live-traffic road networks and all types of practical use-cases. The proposed SALT framework is a deployable software solution capturing a range of graph-related query problems under one “algorithmic hood”.

Keywords

Shortest-paths k-nearest neighbors kNN Salt framework 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.: Route Planning in Transportation Networks. Technical report, Microsoft Research (2014)Google Scholar
  2. 2.
    Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining hierarchical and goal-directed speed-up techniques for dijkstra’s algorithm. J. Exp. Algorithmics 15, 2.3:2.1–2.3:2.31 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Delling, D., Goldberg, A., Pajor, T., Werneck, R.: Customizable route planning in road networks. working paper, submitted for publication (2013)Google Scholar
  4. 4.
    Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  5. 5.
    Delling, D., Goldberg, A.V., Werneck, R.F.F.: Faster batched shortest paths in road networks. In: ATMOS, pp. 52–63 (2011)Google Scholar
  6. 6.
    Delling, D., Werneck, R.F.: Faster customization of road networks. In: Demetrescu, C., Marchetti-Spaccamela, A., Bonifaci, V. (eds.) SEA 2013. LNCS, vol. 7933, pp. 30–42. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Delling, D., Werneck, R.F.: Customizable point-of-interest queries in road networks. IEEE Transactions on Knowledge and Data Engineering (2014) (to appear)Google Scholar
  8. 8.
    Demetrescu, C., Goldberg, A.V., Johnson, D.: The shortest path problem. Ninth DIMACS implementation challenge, Piscataway, NJ, USA, November 13–14, 2006. Proceedings. DIMACS Book 74. AMS (2009)Google Scholar
  9. 9.
    Dibbelt, J., Strasser, B., Wagner, D.: Customizable contraction hierarchies. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 271–282. Springer, Heidelberg (2014) Google Scholar
  10. 10.
    Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In: Proceedings of the 6th ACM SIGSPATIAL International Workshop on Computational Transportation Science. IWCTS 2013, New York, NY, USA, pp. 25–30 (2013)Google Scholar
  11. 11.
    Efentakis, A., Pfoser, D.: GRASP. Extending graph separators for the single-source shortest-path problem. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 358–370. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Efentakis, A., Theodorakis, D., Pfoser, D.: Crowdsourcing computing resources for shortest-path computation. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2012. ACM (2012)Google Scholar
  13. 13.
    Goldberg, A.V., Harrelson, C.: Computing the shortest path: a* search meets graph theory. In: 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 156–165 (2004)Google Scholar
  14. 14.
    Jensen, C.S., Kolářvr, J., Pedersen, T.B., Timko, I.: Nearest neighbor queries in road networks. In: Proceedings of the 11th ACM International Symposium on Advances in Geographic Information Systems, GIS 2003, pp. 1–8. ACM, New York (2003)Google Scholar
  15. 15.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Maue, J., Sanders, P., Matijevic, D.: Goal directed shortest path queries using precomputed cluster distances. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp. 316–328. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous nearest neighbor monitoring in road networks. In: Proceedings of the 32Nd International Conference on Very Large Data Bases, VLDB 2006, pp. 43–54. VLDB Endowment (2006)Google Scholar
  18. 18.
    Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in large networks. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM 2009, pp. 867–876. ACM, New York (2009)Google Scholar
  19. 19.
    Sanders, P., Schulz, C.: Engineering multilevel graph partitioning algorithms. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 469–480. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  20. 20.
    Wang, H., Zimmermann, R.: Processing of continuous location-based range queries on moving objects in road networks. IEEE Transactions on Knowledge and Data Engineering 23(7), 1065–1078 (2011)CrossRefGoogle Scholar
  21. 21.
    Zhong, R., Li, G., Tan, K.-L., Zhou, L.: G-tree: an efficient index for knn search on road networks. In: Proceedings of the 22nd ACM International Conference on Information Knowledge Management, CIKM 2013, pp. 39–48. ACM, New York (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexandros Efentakis
    • 1
  • Dieter Pfoser
    • 2
  • Yannis Vassiliou
    • 3
  1. 1.Research Center “Athena”MarousiGreece
  2. 2.Department of Geography and GeoInformation ScienceGeorge Mason UniversityFaifaxUS
  3. 3.National Technical University of AthensZografouGreece

Personalised recommendations