Reoptimization Techniques for MIP Solvers

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9125)

Abstract

Recently, there have been many successful applications of optimization algorithms that solve a sequence of quite similar mixed-integer programs (MIPs) as subproblems. Traditionally, each problem in the sequence is solved from scratch. In this paper we consider reoptimization techniques that try to benefit from information obtained by solving previous problems of the sequence. We focus on the case that subsequent MIPs differ only in the objective function or that the feasible region is reduced. We propose extensions of the very complex branch-and-bound algorithms employed by general MIP solvers based on the idea to “warmstart” using the final search frontier of the preceding solver run. We extend the academic MIP solver SCIP by these techniques to obtain a reoptimizing branch-and-bound solver and report computational results which show the effectiveness of the approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, TU Berlin (2007)Google Scholar
  2. 2.
    Achterberg, T.: SCIP: solving constraint integer programs. Mathematical Programming Computation 1(1), 1–41 (2009)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: On the solution of traveling salesman problems. Documenta Mathematica Journal der Deutschen Mathematiker-Vereinigung Extra Volume ICM III, 645–656 (1998)Google Scholar
  4. 4.
  5. 5.
    Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. The Computer Journal 8(3), 250–255 (1965)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Danna, E., Fenelon, M., Gu, Z., Wunderling, R.: Generating multiple solutions for mixed integer programming problems. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 280–294. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  7. 7.
    Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Operations Research 8(1), 101–111 (1960)MATHCrossRefGoogle Scholar
  8. 8.
    Desrochers, M., Soumis, F.: A reoptimization algorithm for the shortest path problem with time windows. European J. Oper. Res. 35(2), 242–254 (1988)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    DIP - Decomposition for Int. Programming. https://projects.coin-or.org/Dip
  10. 10.
    Fischetti, M., Lodi, A.: Mipping closures: An instant survey. Graphs and Combinatorics 23, 233–243 (2007)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. Math. Program., Ser. B 110, 3–20 (2007)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Frangioni, A., Manca, A.: A computational study of cost reoptimization for min cost flow problems. INFORMS Journal on Computing 18(1) (2006)Google Scholar
  13. 13.
    Gamrath, G.: Generic branch-cut-and-price. Master’s thesis, TU Berlin (2010)Google Scholar
  14. 14.
    Gamrath, G., Lübbecke, M.E.: Experiments with a generic dantzig-wolfe decomposition for integer programs. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 239–252. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  15. 15.
    GCG - Generic Column Generation. http://www.or.rwth-aachen.de/gcg/
  16. 16.
    Güzelsoy, M.: Dual methods in mixed integer linear programming. Ph.D. thesis, Lehigh University, Bethlehem, Pennsylvania, USA (2009)Google Scholar
  17. 17.
    Hiller, B., Klug, T., Witzig, J.: Reoptimization in branch-and-bound algorithms with an application to elevator control. In: Demetrescu, C., Marchetti-Spaccamela, A., Bonifaci, V. (eds.) SEA 2013. LNCS, vol. 7933, pp. 378–389. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  18. 18.
    Karzan, F.K., Nemhauser, G.L., Savelsbergh, M.W.P.: Information-based branching schemes for binary linear mixed integer problems. Mathematical Programming Computation 1(4), 249–293 (2009)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497–520 (1960)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Létocart, L., Nagih, A., Plateau, G.: Reoptimization in Lagrangian methods for the 0–1 quadratic knapsack problem. Comput. Oper. Res. 39(1), 12–18 (2012)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Miller-Hooks, E., Yang, B.: Updating paths in time-varying networks given arc weight changes. Transportation Science 39(4), 451–464 (2005)CrossRefGoogle Scholar
  22. 22.
    Ralphs, T.K., Galati, M.V.: Decomposition in integer linear programming. In: Karlof, J.K. (ed.) Integer Programming: Theory and Practice. CRC Press (2006)Google Scholar
  23. 23.
    Ralphs, T.K., Güzelsoy, M.: Duality and warm starting in integer programming. In: The Proceedings of the 2006 NSF Design, Service, and Manufacturing Grantees and Research Conference (2006)Google Scholar
  24. 24.
    Savelsbergh, M.W.P.: Preprocessing and probing techniques for mixed integer programming problems. ORSA Journal on Computing 6, 445–454 (1994)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    SCIP - Solving Constraint Integer Programs. http://scip.zib.de/
  26. 26.
    Tanaka, M., Kobayashi, K.: MISOCP formulation and route generation algorithm for ship navigation problem. Tech. Rep. 2013–8, Tokyo Inst. of Technology (2013)Google Scholar
  27. 27.
    Witzig, J.: Reoptimization Techniques for MIP Solvers. Master’s thesis, TU Berlin (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Zuse Institute BerlinBerlinGermany

Personalised recommendations